SFF Committee documentation may be purchased in electronic form. SFF specifications are available at ftp://ftp.seagate.com/sff

SFF Committee

SFF-8611

Specification for

MiniLink 4/8X I/O Cable Assemblies

Rev 0.3 August 20, 2015

Secretariat: SFF Committee

Abstract: This specification defines the physical interface and general performance requirements for the MiniLink cable assemblies, which are designed for use in high speed serial, interconnect applications at multi-gigabit speeds. These cable assemblies are popularly referred to as MiniLink Cable Assemblies and mate with MiniLink Connectors in SFF-8612.

This specification provides a common reference for systems manufacturers, system integrators, and suppliers. This is an internal working specification of the SFF Committee, an industry ad hoc group.

This specification is made available for public review, and written comments are solicited from readers. Comments received by the members will be considered for inclusion in future revisions of this specification.

The description of a cable assembly in this specification does not assure that the specific assembly is actually available from cable suppliers. If such a cable assembly is supplied it must comply with this specification to achieve interoperability between suppliers.

Support: This specification is supported by the identified member companies of the SFF Committee.

POINTS OF CONTACT:

Jay Neer Technical Editor Molex 2222 Wellington Court Lisle, Il 60532 Ph: 561-447-2907x555-3889 Email: jay_dot_neer_at_molex_dot_com I. Dal Allan Chairman SFF Committee 14426 Black Walnut Court Saratoga, CA 95070

Ph: 408-867-6630 Email: endlcom_at_acm_dot_org

EXPRESSION OF SUPPORT BY MANUFACTURERS

The following member companies of the SFF Committee voted in favor of this industry specification.

tbd

The following member companies of the SFF Committee voted to abstain on this industry specification.

tbd

The user's attention is called to the possibility that implementation to this Specification may require use of an invention covered by patent rights. By distribution of this Specification, no position is taken with respect to the validity of this claim or of any patent rights in connection therewith. Members of the SFF Committee, which advise that a patent exists, are required to provide a statement of willingness to grant a license under these rights on reasonable and non-discriminatory terms and conditions to applicants desiring to obtain such a license.

Change History

Rev 0.1

- First draft
- Rev 0.2
- The speed characteristics and electrical considerations of SFF-8611 were removed to create SFF-8621.
- Rev 0.3
- Added to the Abstract
- Added to the list of Industry documents
- Added notes 4 & 5 to 3.1
- Added contact function note to 4.1
- Replaced Figure 4-1, added Fig 4-2, Replaced Fig 5-1.
- Added dimensions for the 8x to Table 5-1
- Revised 6-1 & 6-2 Figure and Table titles
- Added 8x dimensions to tables 6-1, 6-2, 6-4
- Revised dimensions and table notes for Tables 6-1, 6-2, 6-4
- Revised Figure 6-3 to clarify the fold and table description
- Corrected Figure & Table titles for 6-5 and 6-6
- Replaced Figure 6-7 and added the statement below the figure
- Revised the min/max numbers in Table 6-5

Foreword

The development work on this specification was done by the SFF Committee, an industry group. The membership of the committee since its formation in August 1990 has included a mix of companies which are leaders across the industry.

When 2 1/2" diameter disk drives were introduced, there was no commonality on external dimensions e.g. physical size, mounting locations, connector type, and connector location, between vendors.

The first use of these disk drives was in specific applications such as laptop portable computers and system integrators worked individually with vendors to develop the packaging. The result was wide diversity, and incompatibility.

The problems faced by integrators, device suppliers, and component suppliers led to the formation of the SFF Committee as an industry ad hoc group to address the marketing and engineering considerations of the emerging new technology.

During the development of the form factor definitions, other activities were suggested because participants in the SFF Committee faced more problems than the physical form factors of disk drives. In November 1992, the charter was expanded to address any issues of general interest and concern to the storage industry. The SFF Committee became a forum for resolving industry issues that are either not addressed by the standards process or need an immediate solution.

Those companies which have agreed to support a specification are identified in the first pages of each SFF Specification. Industry consensus is not an essential requirement to publish an SFF Specification because it is recognized that in an emerging product area, there is room for more than one approach. By making the documentation on competing proposals available, an integrator can examine the alternatives available and select the product that is felt to be most suitable.

SFF Committee meetings are held during T10 weeks (see www.tl0.org), and Specific Subject Working Groups are held at the convenience of the participants. Material presented at SFF Committee meetings becomes public domain, and there are no restrictions on the open mailing of material presented at committee meetings.

Most of the specifications developed by the SFF Committee have either been incorporated into standards or adopted as standards by EIA (Electronic Industries Association), ANSI (American National Standards Institute) and IEC (International Electrotechnical Commission).

If you are interested in participating or wish to follow the activities of the SFF Committee, the signup for membership and/or documentation can be found at: <u>http://www.sffcommittee.com/ie/join.html</u>

The complete list of SFF Specifications which have been completed or are currently being worked on by the SFF Committee can be found at: <u>ftp://ftp.seagate.com/sff/SFF-8000.TXT</u>

If you wish to know more about the SFF Committee, the principles which guide the activities can be found at:

ftp://ftp.seagate.com/sff/SFF-8032.TXT

Suggestions for improvement of this specification will be welcome. They should be sent to the SFF Committee, 14426 Black Walnut Ct, Saratoga, CA 95070.

TABLE OF CONTENTS

1.	Scope	5
	1.1 Application Specific Criteria	5
2.	References	5
	2.1 Industry Documents	5
	2.2 SFF Specifications	5
	2.3 Conventions	5
	2.4 Definitions	6
3.	Description	7
	3.1 General Cable Assembly Attributes	8
4.	Contact Position Numbering and Length	8
	4.1 Locations of the Long and Short Contacts	10
5.	Free Connector Mating Interface	11
6.	Free Cable Assemblies	13
7.	Performance Requirements	19

FIGURES

Figure	2-1	Mating Side Gender Definition	6
Figure	3-1	General View - Free Cable Exit Configurations	7
Figure	4-1	Contact number locations for Free Cable Assemblies	8
Figure	5-1	Free Connector Mating Interface	11
Figure	6-1	Straight-out Cable Exit Internal Cable Assembly	13
Figure	6-2	Right Angle Cable Exit Internal Cable Assembly	14
Figure	6-3	Ribbon Cable Fold	15
Figure	6-4	Free External Cable Assembly	16
Figure	6-5	Free Cable Passive Latch	17
Figure	6-6	Free Cable Active Latch	17
Figure	6-7	Fixed Connector Latch Windows	18

TABLES

Table	3-1	Free Plug Cable Exit Configurations	7
Table	4-1	Locations of the 4X Long and Short Contacts	10
Table	4-2	Locations Of The 8X Long And Short Contacts	10
Table	5-1	Free Connector Mating Interface Dimensions	12
Table	6-1	Straight-out Cable Exit Internal Cable Assembly Dimensions	13
Table	6-2	Right Angle Cable Exit Internal Cable Assembly Dimensions	14
Table	6-3	Ribbon Cable Fold Dimensions	15
Table	6-4	Free External Cable Assembly Dimensions	16
Table	6-5	Free Cable Passive Latch Dimensions	17
Table	6-6	Free Cable Active Latch Dimensions	17
Table	6-7	Cable Latching Requirements	18
Table	7-1	TS-1000 Requirements	19
Table	7-2	Electrical Requirements	19
Table	7-3	Mechanical Requirements	20
Table	7-4	Environmental Requirements	20

1. Scope

This specification defines the MiniLink cable plug, the basic pinout and the latching requirements for them based upon the mating interface defined herein.

1.1 Application Specific Criteria

This connector is capable of meeting the interface requirements for the internal I/O requirements of T10 SAS-4.

2. References

The SFF Committee activities support the requirements of the storage industry, and it is involved with several standards.

2.1 Industry Documents

The following interface standards and specifications are relevant to this Specification.

- EIA 364 Electrical Connector/Socket Test Procedures
- INCITS 519 SAS-3
- INCITS 534 SAS-4
- IPC-A-610 Acceptability of Electronic Assemblies
- PCIe OCuLink
- SFF-8410 HSS Copper Testing and Performance Requirements
- SFF-8435 Maximizing Card Edge Tolerances Technique
- SFF-8612 MiniLink 4/8X Shielded Connectors
- SFF-9400 Universal 4/8X Pinouts
- SFF-9401 SAS-4 Internal Cabling Pinout Recommendations

2.2 SFF Specifications

There are several projects active within the SFF Committee. The complete list of specifications which have been completed or are still being worked on are listed in the specification at <u>ftp://ftp.seagate.com/sff/SFF-8000.TXT</u> Sources Those who join the SFF Committee as an Observer or Member receive electronic copies

of the minutes and SFF specifications (<u>http://www.sffcommittee.com/ie/join.html</u>).

Copies of ANSI standards may be purchased from the Inter-National Committee for Information Technology Standards (<u>http://tinyurl.com/c4psg)</u>.

Copies of SFF, ASC T10 (SCSI), T11 (Fibre Channel) and T13 (ATA/SATA) standards and standards still in development are available on the HPE version of CD_Access (<u>http://tinyurl.com/85fts</u>).

2.3 Conventions

The dimensioning conventions are described in ANSI-Y14.5M, Geometric Dimensioning and Tolerancing. All dimensions are in millimeters.

The ISO convention of numbering is used i.e., the thousands and higher multiples are separated by a space and a period is used as the decimal point. This is equivalent to the English/American convention of a comma and a period.

American	French	ISO
0.6	0,6	0.6
1,000	1 000	1 000
1,323,462.9	1 323 462,9	1 323 462.9

2.4 Definitions

For the purpose of SFF Specifications, the following definitions apply:

Fixed: Used to describe the gender of the mating side of the connector that accepts its mate upon mating. This gender is frequently, but not always, associated with the common terminology "receptacle". Other terms commonly used are "female" and "socket connector". The term "fixed" is adopted from EIA standard terminology as the gender that most commonly exists on the fixed end of a connection, for example, on the board or bulkhead side. In this specification "fixed" is specifically used to describe the mating side gender illustrated in Figure 3-1.

Free: Used to describe the gender of the mating side of the connector that penetrates its mate upon mating. This gender is frequently, but not always, associated with the common terminology "plug". Other terms commonly used are "male" and "pin connector". The term "free" is adopted from EIA standard terminology as the gender that most commonly exists on the free end of a connection, for example, on the cable side. In this specification "free" is specifically used to describe the mating side gender illustrated in Figure 3-1.

Height: Distance from board surface to farthest overall connector feature

Mating Side:The side of the connector that joins and separates from the mating side of a connector of opposite gender. Other terms commonly used in the industry are mating interface, separable interface and mating face.

FIXED FREE

Note: The free gender is used on the cable side except in the case of wire termination. FIGURE 2-1 MATING SIDE GENDER DEFINITION

PCB: Printed Circuit Board

Press-fit: Press-fit is a compliant pin, solder free process used to connect connector pins and tabs to a PCB. The mechanical and electrical interfaces between the connector and the PCB are made by a spring-like compliant pin and a plated thru hole (via).

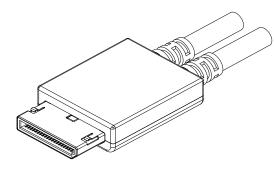
PTH: Plated Through Hole

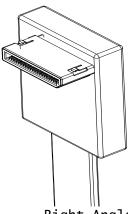
Right Angle: A connector design for use with printed circuit board assembly technology where the mating direction is parallel to the plane of the printed circuit board.

Straight: A connector design for use with printed circuit board assembly technology where the mating direction is perpendicular to the plane of the printed circuit board.

Surface Mount: A connector design and a printed circuit board design style where the connector termination points do not penetrate the printed circuit board and are subsequently soldered to the printed circuit board.

Termination Side: The side of the connector opposite the mating side that is used for permanently attaching conductors to the connector. Due to contact numbering differences between mating side genders the termination side shall always be specified in conjunction with a mating side of a specific gender. Other terms commonly used in the industry are: back end, non-mating side, footprint, pc board side, and post side.


Through Hole: A connector design and a printed circuit board design style where the connector termination points penetrates the printed circuit board and are subsequently soldered to the printed circuit board.


3. Description

The cable assembly system is based upon straight-out and right angle cable exit (free) mating plugs. The integral plug shell functions as the guide for the free (plug) connector interface and also provides the latches for mating with the receptacles in SFF-8612. This connector system provides positive retention along with ease of insertion and removal.

See SFF-8612 for the Fixed (Receptacle) detail/mating interface

This specification provides for 1x1 (4X) and 1x1 (8X) (free side) straight-out and right angle cable exit mating cable plugs.

Straight-out Cable Exit Right Angle Cable Exit FIGURE 3-1 GENERAL VIEW - FREE CABLE EXIT CONFIGURATIONS

Port	Positions	Straight-out	Right Angle									
1x1 (4X)	42	Х	Х									
1x1 (8X)	80	Х	Х									

TABLE 3-1 FREE PLUG CABLE EXIT CONFIGURATIONS

3.1 General Cable Assembly Attributes

- Dual bundle, single bundle and ribbon cable solutions are acceptable 1. providing they meet all performance and form factor requirements - not all versions are shown.
- 2. The bulk cable to connector attachment will vary by the type of bulk cable as well as the variety of cable exit solutions and will be left to the cable assembly suppliers to define.
- Completed cable assemblies shall comply with the cable exit form factor 3. dimensions defined in this specification.
- Cables may have either Straight-out cable exit or Right angle cable exit 4. versions on either end and 8x to (2) 4x cables may be either style as well.
- 5. The Free Cable-side Connectors mate with the Host Board-side connectors defined in SFF-8612. They shall be capable of incorporating either passive or active latching solutions for finished cable assemblies to be mechanically retained to the Fixed side connectors.

4. Contact Position Numbering and Length

All Free Cable Assemblies have the same contact numbering as shown.

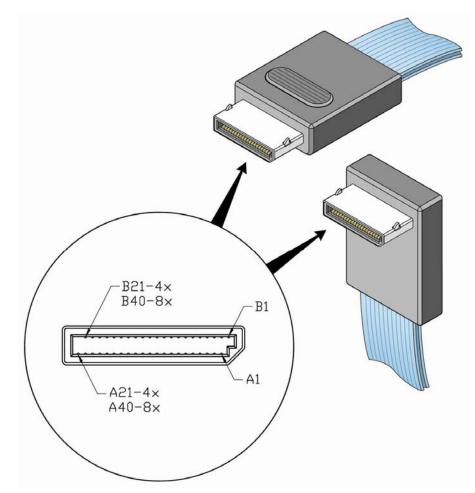


FIGURE 4-1 CONTACT NUMBER LOCATIONS FOR FREE CABLE ASSEMBLIES

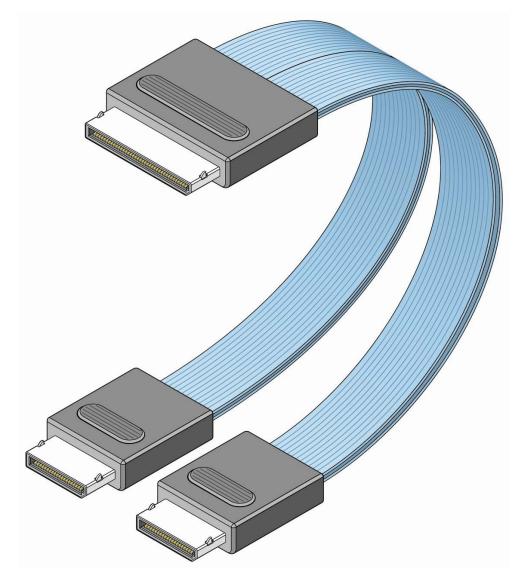


FIGURE 4-2 8X TO (2) 4X FREE CABLE ASSEMBLIES

F

4.1 Locations of the Long and Short Contacts

The contact position numbers are shown in the top row, with the long and short contacts designated as "L" and "S" respectively in the bottom row.

The contact functions are assigned by and are application specific.

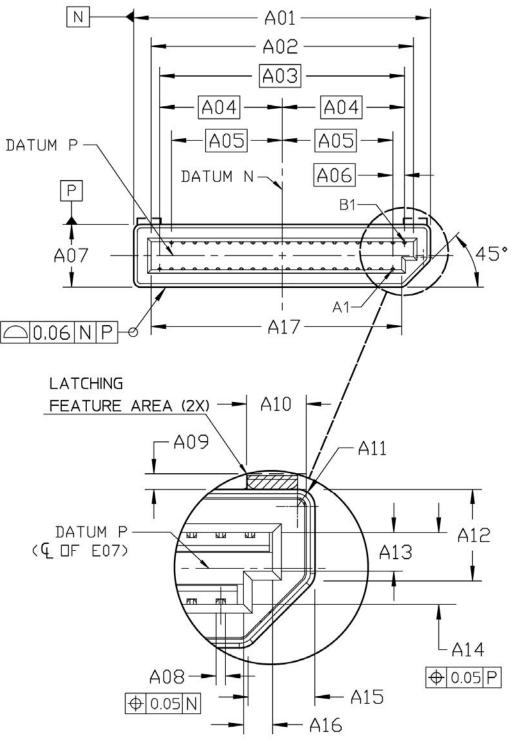
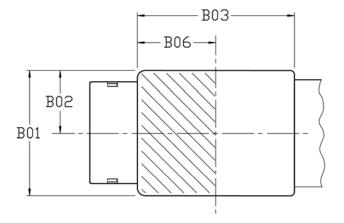
Description		1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2 1
The contact functions are defined	Row A																					
by the application	Row B																					
Long/Short contact positions		S	L	S	S	L	S	S	L	S	S	L	S	S	L	S	S	L	S	S	L	S

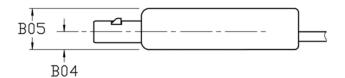
TABLE 4-1 LOCATIONS OF THE 4X LONG AND SHORT CONTACTS

TABLE 4-2 LOCATIONS OF THE 8X LONG AND SHORT CONTACTS

Description		1	2	3	4	5	6	7	8	The LSSL	3 0	3 1	3 2	3 3	3 4	3 5	3 6	3 7	3 8	3 9	4 0
The contact functions	Row A									contact length											
are defined by the application	Row B									sequence continues through											
Long/Short contact positions		L	s	s	L	s	S	L	s	positions 9-29	s	L	S	S	L	s	S	L	S	S	L

5. Free Connector Mating Interface


FIGURE 5-1 FREE CONNECTOR MATING INTERFACE

Designator	Description	Dimer	nsion	Tolerance ±		
		4X	8X			
A01	Connector Shell Width (Datum A)	12.73	22.27	0.03		
A02	Upper Row Interface Width	11.28	20.78	0.03		
A03	CL to CL of Outside Contact Beams	10.50	20.00	Basic		
A04	Vertical CL of Connector Shell to Outside Contacts	5.25	10.00	Basic		
A05	Vertical CL of Connector Shell to Inside Contacts	4.75	9.50	Basic		
		Com	mon			
A06	Contact Beam Pitch	0.	50	Basic		
A07	Connector Shell Height (Datum B)	2.	72	0.03		
A08	Contact Width	0.	16	0.03		
A09	Clearance Area Reserved for Latching Mechanism (Height) (2x)	0.	43	0.05		
A10	Clearance Area Reserved for Latching Mechanism (Width) (2x)	1.	05	0.05		
A11	Outside Radius (all)	0.	30	MAX		
A12	Top of Shell to Polarizing Feature TSC (Shell)	1.	57	0.04		
A13	Polarizing Notch Height	0.	67	0.03		
A14	Interface Cavity Height (A Side to B Side)	1.	23	0.05		
A15	Side of Shell to Inside Polarizing Feature	1.	15	0.05		
A16	Polarizing Notch Width	0.	50	0.03		
A17	Lower Row Interface Width	10.70	20.30	0.03		

TABLE 5-1 FREE CONNECTOR MATING INTERFACE DIMENSIONS

6. Free Cable Assemblies

Designator	Description	Dime	ension	Tolerance ±
		4X	8X	
B01	Housing Width	17.0	27.50	MAX
		Со	mmon	
B02	CL to Housing Edge	As Re	equired	
DU2	CL to Housing Edge	foi	r B01	
B03	Housing Length	2	0.0	MAX
B04	Connector CL to Bottom of Housing	2	.20*	MAX
B05	Housing Thickness	7	.25	MAX
B06	Boundary for Push to Release DeLatch	10	0.10	MAX
*Required o	nly to enable the plug to be mated to a	a Mid-k	board mou	unted x4 or
x8 Fixed Ri	ght Angle Connector			
See Figure	6-5 and Table 6-5 for passive latch det	tails		

.

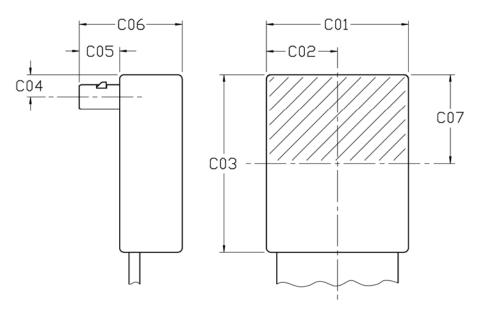
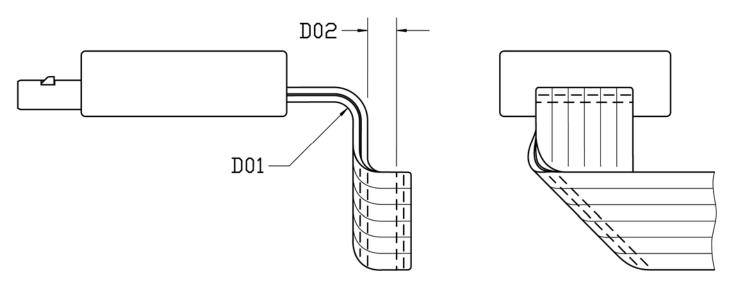



FIGURE 6-2 RIGHT ANGLE CABLE EXIT INTERNAL CABLE ASSEMBLY

Designator	Description	Dime	nsion	Tolerance ±				
		4X	8X					
C01	Housing Width	17.0	27.5 0	MAX				
		Con	mon					
C02	CL to Housing Edge		quired C01					
C03	Housing Length	21	0	MAX				
C04	Connector Interface CL to Edge of Housing	6	. 5	0.25				
C05	Connector Snout Length	5	.0	0.05				
C06	Overall Height end of snout to top of Housing	9.	8*	0.5				
C07								
*Enables ma	ted height to remain below the MAX compor	nent he	ight on	a PCIe				
	when mated to a x4 or x8 vertical host s		nnector					
See Figure	6-6 and Table 6-6 for active latch detail	S						

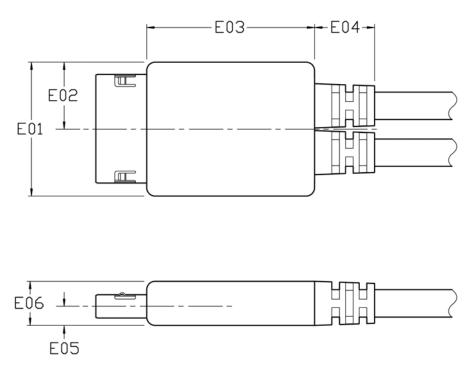

TABLE 6-2 F	RIGHT ANGL	E CABLE EXI	INTERNAL	CABLE	ASSEMBLY	DIMENSIONS
-------------	------------	-------------	-----------------	-------	----------	------------

FIGURE 6-3 RIBBON CABLE FOLD

TABLE 6-3 RIBBON CABLE FOLD DIMENSIONS

Designator	Description	Dimension
	Cable Diameter	Supplier Specific
D01	Cable Rend Radius	Bend R MIN
DOI	DO1 Cable Bend Radius	
	Note: Ribbon cable shall not be folded flat	
	against itself when folded.	2x cable
D02	A minimum space between folded cable shall be	thickness
	maintained to preserve the properties of the	Fold R MIN
	cable insulator and thereby the signal integrity.	

FIGURE 6-4 FREE EXTERNAL CABLE ASSEMBLY

TABLE 6-4 FREE EXTERNAL	CABLE ASS	EMBLY DIMENSIONS	
Description		Dimension	Το

Designator	Description	Dimension		Tolerance ±	
		4x	8x		
E01	Width of Housing	17.00	27.50	MAX	
		Com	mon		
E02	CL of Housing to Edge	As Requ	ired for		
EUZ	CE OF HOUSTING TO EUge	E01			
E03	Housing Length 25.00		.00	MAX	
E04	Length of Flex Relief (Optional)	7.75		MAX	
E05	Connector CL to Bottom of Housing	2.	60	MAX	
E06	Thickness of Housing	7.	25	MAX	
* Enables belly to belly implementations on a 1.4 mm MIN thick host board.					
See Figure 6	See Figure 6-5and Error! Reference source not found. for passive latch				
details.	•				

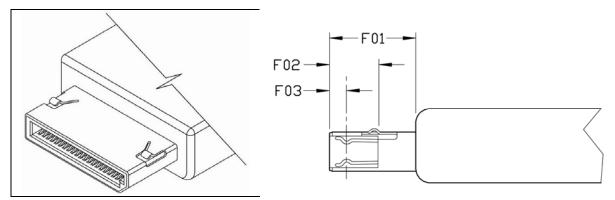
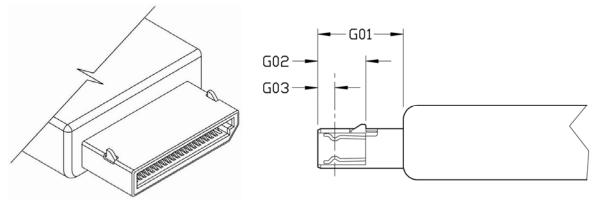



FIGURE 6-5 FREE CABLE PASSIVE LATCH

Designator	Description	Dimension	Tolerance ±
F01	Connector Snout Length	5.95	0.05
F02	Front of Connector to Passive Latch Retention Point	3.40	0.05
F03	Front of Connector to Contact Point	1.25	0.05

FIGURE	6-6	FREE	CABLE	ACTIVE	LATCH	

TABLE 6-6 FREE CABLE A	ACTIVE LATCH DIMENSIONS
------------------------	-------------------------

Designator	Description	Dimension	Tolerance ±
G01	Connector Snout Length	5.95	0.05
G02	Front of Connector to Active-Latch Retention Point	3.40	0.08
G03	Front of Connector to Contact Point of Terminal	1.25	0.05

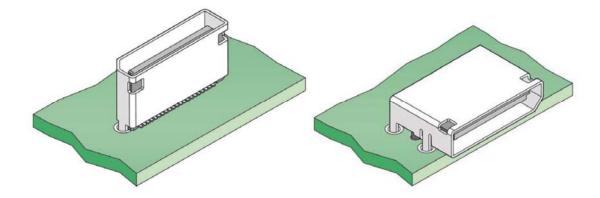


FIGURE 6-7 FIXED CONNECTOR LATCH WINDOWS

The windows in the top of the Fixed right angle connector and the windows in the side wall of the Fixed vertical connector serve as the latching points for the Free Cable latches. The windows accept both passive and active latching solutions that are defined on the Free cable side. For dimensional details, refer to SFF-8612.

Description	Min	Ma	ax	Units	Conditions / Comments
Mating Force					Rate 19-31 mm/s EIA 364-13
- Connector (w/out latch)	2	20 35 35 20	35 35 25 40	Ν	
- Connector W/ Passive Latch	10	40		Ν	
- Connector W/Active Latch	8	40		Ν	
Un-Mating Force					Rate 19-31 mm/s EIA 364-13
- Connector (w/out latch)	1	16		Ν	
- Connector W/ Passive Latch	8	25		Ν	
- Connector W/Active Latch W/Pull	8	25		Ν	
Wrenching Strength W/ Mated Cable- Internal		25		Ν	Bend cable 90 degrees at minimum bend radius. Pull in 4 axis directions for round cable. Pull in 2 axis directions for flat cable. No damage to plug/cable assembly
Wrenching Strength W/ Mated Cable- External		40		Ν	Bend cable 90 degrees at minimum bend radius. Pull in 4 axis directions for round cable. Pull in 2 axis directions for flat cable. No damage to plug/cable assembly
Active Latch Retention Strength - Internal	30			Ν	No damage to plug/cable assembly below Minimum Value
Active Latch Retention Strength - External	60			N	No damage to plug/cable assembly below Minimum Value

TABLE 6-7 CABLE LATCHING REQUIREMENTS

7. Performance Requirements

See section 1.1 for the Electrical Performance requirements for this connector solution.

This specification conforms to the test sequences as defined in EIA-364 TS-1000.

Description	Requirement
Rated Durability Cycles	250
Field Life (3, 5, 7, or 10 years)	10 years
	3 years
Field Temperature (57, 60, 65, 75, or 85C)	65C degrees
Field Operating Temperature - External	-25C ~ +55C degrees
Field Operating Temperature - Internal	-25C ~ +60C degrees
Storage Temperature	-40C to +85C degrees
Test Group 4 Option	1B
Plating Type (Precious / non-Precious)	Precious
Surface Treatment (Lubricated or non-	Manufacturer to specify
Lubricated)	

TABLE 7-2 ELECTRICAL REQUIREMENTS

Description	Requirement	Procedure		
Current	0.5 A per contact			
Voltage	30 VDC per contact			
Low Level Contact	Baseline	EIA 364-23		
Resistance		20 mVDC, 10 mA		
Insulation Resistance 1000 Megohms minimum between		100 VDC		
	adjacent contacts			
Dielectric Withstanding No defect or breakdown between		300 VDC minimum		
Voltage adjacent contacts		for 1 minute		
The minimum Hi-Pot requirement for cable assemblies shall be 240 VDC for 100 ms.				

Description	Requirement	Procedure
Mating Force	150N maximum	EIA 364-13
Un-mating Force	50N maximum	EIA 364-13
Vibration	- No Damage	EIA 364-28
	- No discontinuity longer than 1	
	microsecond allowed.	
	- 20 milliohms maximum change from	
	initial (baseline) contact	
	resistance	
	- 30 mOhm maximum change from	
	initial (baseline) contact	
	resistance	
Mechanical Shock	- No Damage	EIA 364-27
	- No discontinuity longer than one	
	microsecond allowed.	
	- 20 milliohms maximum change from	
	initial (baseline) contact	
	resistance - 30 mOhm maximum change from	
	initial (baseline) contact	
	resistance	
Surface Treatment	Specified by Manufacturer	
(Lubricated or non-	Spectried by Manuracturer	
Lubricated)		
Rated Durability Cycles	500	
- External		
Rated Durability Cycles	50	
- Internal		

TABLE 7-3 MECHANICAL REQUIREMENTS

TABLE 7-4 ENVIRONMENTAL REQUIREMENTS

Description	Requirement	
Storage Temperature	-20C to +85C degrees	
	-40C to +85C degrees	
Humidity	80 percent Relative Humidity	