SFF Committee documentation may be purchased in hard copy or electronic form SFF specifications are available at ftp://ftp.seagate.com/sff

SFF Committee

INF-8478i Specification for

OC48 DWDM Pluggable Transceiver

Rev 3.0 May 30 2003

Secretariat: SFF Committee

Abstract: This specification describes the OC48 DWDM Pluggable Transceiver. It was developed by the MSA (Multiple Source Agreement) group in which the following companies participated:

Agilent NEC Alcatel Optronics OKI

Bookham Technology Sumitomo/Excelight

JDSU Triquint Optoelectronics

Mitsubishi

This Information Specification was not developed or endorsed by the SFF Committee but was submitted for distribution on the basis that it is of interest to the storage industry. The copyright on the contents remains with the contributor.

Contributors are not required to abide by the SFF patent policy. Readers are advised of the possibility that there may be patent issues associated with an implementation which relies upon the contents of an 'i' specification.

SFF accepts no responsibility for the validity of the contents.

POINTS OF CONTACT:

Dan Rausch
Technical Editor
Avago Technologies
350 West Trimble Rd
San Jose CA 95131

I. Dal Allan
Chairman SFF Committee
14426 Black Walnut Court
Saratoga
CA 95070

 408-435-6689
 408-867-6630

 dan.rausch@avagotech.com
 endlcom@acm.org

EXPRESSION OF SUPPORT BY MANUFACTURERS

The following member companies of the SFF Committee voted in favor of this industry specification.

The following member companies of the SFF Committee voted against this industry specification.

The following member companies of the SFF Committee voted to abstain on this industry specification.

SFF COMMITTEE

The SFF Committee is an industry group. The membership of the committee since its formation in August 1990 has included a mix of companies which are leaders across the industry.

When 2 1/2" diameter disk drives were introduced, there was no commonality on external dimensions e.g. physical size, mounting locations, connector type, connector location, between vendors.

The first use of these disk drives was in specific applications such as laptop portable computers and system integrators worked individually with vendors to develop the packaging. The result was wide diversity, and incompatibility.

The problems faced by integrators, device suppliers, and component suppliers led to the formation of the SFF Committee as an industry ad hoc group to address the marketing and engineering considerations of the emerging new technology.

During the development of the form factor definitions, other activities were suggested because participants in the SFF Committee faced more problems than the physical form factors of disk drives. In November 1992, the charter was expanded to address any issues of general interest and concern to the storage industry. The SFF Committee became a forum for resolving industry issues that are either not addressed by the standards process or need an immediate solution.

Those companies which have agreed to support a specification are identified in the first pages of each SFF Specification. Industry consensus is not an essential requirement to publish an SFF Specification because it is recognized that in an emerging product area, there is room for more than one approach. By making the documentation on competing proposals available, an integrator can examine the alternatives available and select the product that is felt to be most suitable.

SFF Committee meetings are held during T10 weeks (see www.t10.org), and Specific Subject Working Groups are held at the convenience of the participants. Material presented at SFF Committee meetings becomes public domain, and there are no restrictions on the open mailing of material presented at committee meetings.

Most of the specifications developed by the SFF Committee have either been incorporated into standards or adopted as standards by EIA (Electronic Industries Association), ANSI (American National Standards Institute) and IEC (International Electrotechnical Commission).

Suggestions for improvement of this specification will be welcome. They should be sent to the SFF Committee, 14426 Black Walnut Ct, Saratoga, CA 95070.

The complete list of SFF Specifications which have been completed or are currently being worked on by the SFF Committee can be found at:

ftp://ftp.seagate.com/sff/SFF-8000.TXT

If you wish to know more about the SFF Committee, the principles which guide the activities can be found at:

ftp://ftp.seagate.com/sff/SFF-8032.TXT

If you are interested in participating or wish to follow the activities of the SFF Committee, the signup for membership and/or documentation can be found at:

www.sffcommittee.com/ie/join.html

or the following application can be submitted.

Name:		Title:			
Company:					
Address:					
Phone:		Fax:			
Email:					
Please	register me with the SFF C	ommittee for one year	r.		
Vot	ing Membership w/Electroni	c documentation	\$ 2	,160	
Vot	ing Membership w/Meeting d	ocumentation	\$ 1	,800	
Nor	n-voting Observer w/Electro	nic documentation			U.S. Overseas
Nor	n-voting Observer w/Meeting	documentation			U.S. Overseas
Check F	Payable to SFF Committee for	r \$ is Encl	osed		
Please	invoice me for \$	on PO #:			
MC/Visa	a/AmX	Exp	pires		
	Committee 126 Black Walnut Ct	408-867-6630			
Sar	ratoga CA 95070	endlcom@acm	.org		

Reference Document for DWDM

PLUGGABLE TRANSCEIVER Modules

This technical document has been created by the DWDM PLUGGABLE TRANSCEIVER MSA group. This document is offered to transceiver users, and suppliers as a basis for a technical agreement. However, it is not a warranted document, each transceiver supplier will have their own datasheet. If the transceiver user wishes to find a warranted document, they should consult the datasheet of the chosen transceiver supplier.

The MSA group reserves the rights at any time to add, amend or withdraw technical data contained in this document.

MSA Group Contacts

Agilent	Mike Lawton	mike lawton@agilent.com	
Alcatel Optronics	Patrice Durand	patrice.durand@alcatel.fr	
Bookham Technology	Luc Hunziker	luc.hunziker@bookham.com	
JDSU	Keith Riffee	keith.riffee@jdsu.com	
Mitsubishi	Junichiro Yamashita	junichiro.yamashita@edg.mea.com	
NEC	Kanji Shuke	shuke@ab.jp.nec.com	
OKI	Komei Yusa	yusa780@oki.co.jp	
Sumitomo/Excelight	Kaz Tanida	tanida@ppd.sei.co.jp	
Triquint Optoelectronics	Genji Tohmon	gtohmon@tqs.com	

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE No changes are allowed to this document

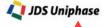

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 1 of 56

Document Change History

Version	Date	Comments
Release 1	28 May, 2002	First Release
Release 2	09 Sep, 2002	Updates from latest MSA Technical Document meetings.
Release 3	30 May, 2003	Updates from latest MSA Technical Document meetings.


REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 2 of 56

TABLE OF CONTENTS

1 REFEREN	NCE DOCUMENTS	6
2 GLOSSAI	RY	7
3 MANDAT	ORY AND OPTIONAL FEATURES	7
4 OVERVIE	W	8
5 SIMPLIFII	ED BLOCK DIAGRAM	9
6 ELECTRI	CAL INTERFACES	10
6.1 6.2 6.3 7 WAVELE	SIGNAL DESCRIPTION	13 15
	RE INTERFACE FORMAT	
8.1 8.2 8.3 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.3.7	ELECTRICAL INTERFACE. ADDRESSING. COMMAND STRUCTURE. Sending Data. Receiving Data Reading From And Writing To The Memory Checksum Byte Error / Status Byte Clock Stretching Module Busy.	17 18 18 18 18 18 19
9 COMMAN	ID SET DETAILS	
9.1 9.2 9.3 9.3.1 9.3.2 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.5 9.6 10 TONE INF	STATIC DATA OPTIONAL FEATURES DIAGNOSTIC MONITORING. Live Data Transceiver Status. ALARMS AND WARNINGS. Alarms (All Alarms are a mandatory requirement). Alarm Trip Points. Warnings (All Warnings are a mandatory requirement). Warning Trip Points. CONTROL FUNCTIONS. CUSTOMER FUNCTIONS.	
11 POWER S	SUPPLY REQUIREMENTS	34
11.1	HOT SWAP AND POWER-ON-RESET	35
12 MECHAN	ICAL DESCRIPTION	36

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE

No changes are allowed to this document A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 3 of 56

ALCATEL

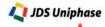
12.1	PHYSICAL ARRANGEMENT (FRONT PANEL MOUNT)	36
12.2	PHYSICAL ARRANGEMENT (IN-BOARD MOUNT)	
12.3	CUSTOMER FACEPLATE & BOARD PROFILE	
12.4	MODULE ELECTRICAL CONNECTOR	47
12.5	PCB MOUNT RAIL SYSTEM	49
12.6	CONNECTOR DESCRIPTION	
13 ENVIR	ONMENTAL CONDITIONS	55
13.1	THERMAL REQUIREMENTS	55
13.2	COOLING	55
14 PIN AS	SIGNMENT	56

List Of Tables

Table 1 -	Transmitter Signal Description	10
Table 2 -	Receiver Signal Description	11
Table 3 -	Control Signal Description	12
Table 4 -	Input / Output Electrical Specification	14
Table 5 -	Control and Monitoring Truth Table	15
Table 6 -	Available Wavelengths	16
Table 7 -	Error / Status Byte	20
Table 8 -	Static Data Command Set	24
Table 9 -	Optional Command Structure	25
Table 10 -	Live Data Command Set	26
Table 11 -	Status Command Structure	26
Table 12 -	Alarm Flag Structure	27
Table 13 -	Normalised Alarm Activation Levels	28
Table 14 -	Warning Flag Structure	29
Table 15 -	Warning Flag Masking byte	30
Table 16 -	Normalised Warnings	
Table 17 -	Control Functions Structure	32
Table 18 -	Customer Memory Functions	33
Table 19 -	Power Supply Requirements	34
Table 20 -	Power Supply Noise Requirements	34
Table 21 -	Initialisation Voltage	
Table 22 -	Definition of Transceiver Module Dimensions	
Table 23 -	Definition of Transceiver Module Datums	39
Table 24 -	Definition of In-board Transceiver Module Dimensions	
Table 25 -	Definition of Host Card / Face Plate Dimensions	46
Table 26 -	Definition of Host Card / Face Plate Datums	46
Table 27 -	Module Electrical Connector Dimensions	48
Table 28 -	Definition of Electrical Connector Datums	
Table 29 -	Definition of Rail System Dimensions	
Table 30 -	70-way Electrical Connector Layout	53
Table 31 -	70-way Electrical Connector Dimensions	
Table 32 -	70-way Electrical Connector Datums	54

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE

No changes are allowed to this document A printed version of this document is an uncontrolled copy


Public Document Release 3

Page 4 of 56

ALCATEL

List Of Figures

Figure 1 -	Module Block Diagram	9
Figure 2 -	Mechanical Outline (Faceplate Mount)	
Figure 3 -	Mechanical Outline - Details	
Figure 4 -	Mechanical Outline (In-board Mount)	40
Figure 5 -	Side View and Front View of Host PCB and Face Plate	41
Figure 6 -	Faceplate and Host Board for Faceplate Mount Modules	42
Figure 7 -	Host Board Connector Layout	43
Figure 8 -	Host Board Keep Out Areas for In-Board Mount Modules	44
Figure 9 -	Module Electrical Connector Pad Definition	47
Figure 10 -	Rear View of Module Showing Relative Pin Positions	48
Figure 11 -	Host Rail System Outline Drawing	
Figure 12 -	Host Rail System Details	
Figure 13 -	Airflow Direction	55

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE

No changes are allowed to this document A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 5 of 56

1 REFERENCE DOCUMENTS

The following documents should be read in conjunction with this specification –

Telcordia GR-253 Synchronous Optical Network (SONET) Transport Systems:

Common Generic Criteria

ITU-T G.957 Optical Interfaces For Equipment and Systems Relating To

The Synchronous Digital Hierarchy

ITU-T G.692 Optical Interfaces For Multichannel Systems with Optical

Amplifiers

GR-468 CORE Generic Reliability Assurance Requirements for Optoelectronic

Devices Used In Telecommunications Equipment

21CFR 1040.10 Laser Safety

IEC 60825-1 Safety Of Laser Products Part 1: Equipment Classification,

Requirements and Users Guide

CENELEC EN50082-1 Electromagnetic Compatibility - Generic Immunity Standard Part 1:

Residential, Commercial, and Light Industry

CENELEC EN50081-1 Electromagnetic Compatibility - Generic Emissions Standard Part 1:

Residential, Commercial, and Light Industry

CENELEC EN50081-1 Electromagnetic Compatibility - Generic Emissions Standard Part 2:

Industrial Environment

PHILIPS 9397-750-00954 The I2C Bus Specification

FCC Part 15 Conducted/Radiated EMI

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3 Page 6 of 56 30/05/03

2 GLOSSARY

ITU-T International Telecommunication Union - Telecommunication

SDH Synchronous Digital Hierarchy

SONET Synchronous Optical Network

PRBS Pseudo Random Binary Sequence

APD Avalanche Photo-Diode

LVCMOS Low Voltage Complimentary Metal Oxide Semiconductor

CML Current Mode Logic

DWDM Dense Wavelength Division Multiplex

TEC Thermo-Electric Cooler

SFP Small Form Pluggable

NRZ Non-Return to Zero

CDR Clock and Data Recovery

3 MANDATORY AND OPTIONAL FEATURES

Italics in tables of this document are used to signify optional features. Features shown in tables as **bold text** are absolute minimum requirements for being DWDM PLUGGABLE MSA compatible.

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3 Page 7 of 56 30/05/03

4 OVERVIEW

The OC48 DWDM PLUGGABLE Module is an advanced, highly integrated, long reach ITU & SONET transceiver, which converts optical signals to and from serial electrical signals. The module wavelength is compliant to the ITU DWDM 50/100GHz wavelength grid covering the C-band (L-Band wavelengths available refer to transceiver vendor datasheet). The module features very high functionality and feature integration, accessible via a two-wire serial (I2C) interface. Electrical connection is made through a 70-pin gold plated edge connector, and the optical interface is via receptacle connector(s). The mechanical outline of the module, and rail system design, enable front panel and in-board mountable modules with respect to the host card. The module operates from a single 3.3V supply.

The OC48 DWDM PLUGGABLE Transceiver has been developed to be a highly flexible platform upon which MSA vendors can build a variety of products for many different customer applications. Several examples of module features that can be implemented on this platform include:

- Operating data rates from 155Mb/s to 2.7Gb/s with an upgrade path to provide a 10Gb/s serial transceiver
- Fiber optic link lengths from 40km to 650km
- Wavelengths compliant to the ITU DWDM 50/100GHz grid covering the C band and/or L band
- Temperature or electrical tunability from two ITU channels up to the entire C or L band
- Decision threshold control of the receiver allowing increased sensitivity over amplified links
- An integrated Variable Optical Attenuator (VOA)
- Wide range of optical output power levels
- OC48 transceiver, transmitter-only, and receiver-only operation at LR-1, LR-2, CWDM, and DWDM
- Optional clock and data recovery at one or more data rates
- Receiver bandwidth adjustment to provide higher sensitivity at lower data rates
- Tone injection and detection

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 8 of 56

30/05/0<u>3</u>

5 SIMPLIFIED BLOCK DIAGRAM

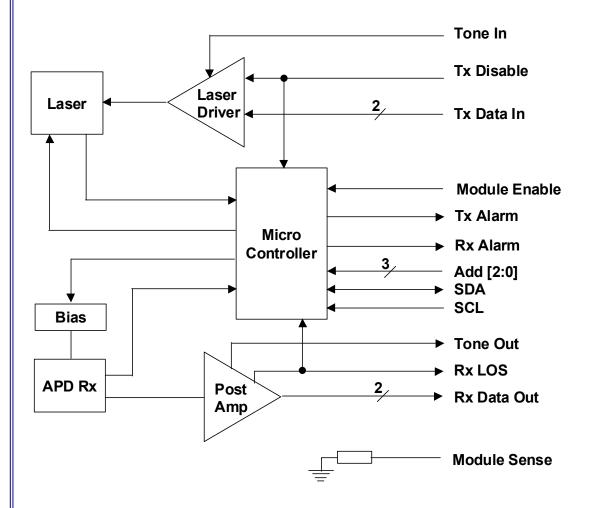


Figure 1 - Module Block Diagram

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 9 of 56

6 ELECTRICAL INTERFACES

6.1 SIGNAL DESCRIPTION

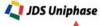
The electrical interfaces from the module to the host board are through a 70-way SFP type connector carrying all power supplies and signalling data for both transmit and receive paths.

Signal directions and types are defined relative to the module.

Signal Classification		1/0	T	D	
Group	Name	I/O	Type	Description	
Data	Tx Data (+ve) ⁴	Input	CML	Tx data bit normal	
Data	Tx Data (-ve) ⁴	Input	CML	Tx data bit inverted	
	Tx DISABLE	Input	LVTTL ¹	Laser disable [Internal pull-up]	
Control	TX ALARM	Output	LVTTL ²	Out of limits detected in Tx	
	TONE IN	Input	Analogue	Low frequency tone	
	Vcc (Tx)		Supply	+3.3V supply for transmitter	
Dawer	Vcc (TEC)	Input	Supply	+3.3V supply for TEC	
Power	GND (TEC)	Output	Supply ³	Ground for TEC	
	GND (Tx)	Output	Supply ³	Ground for Transmitter	
Clock	Tx CLK (+ve) ⁴	Input	CML	Reference clock normal	
Clock	Tx CLK (-ve) ⁴	Input	CML	Reference clock inverted	

- 1. Interfaces to LVCMOS. Active high to disable.
- 2. Interfaces to LVCMOS. Active high to indicate out of limits detected.
- 3. Ground to be DC isolated between signal and module housing
- 4. The Tx Data & Tx CLK signals are AC coupled and have internal 50 Ohm termination.

Table 1 - Transmitter Signal Description


REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 10 of 56

Signal C	Signal Classification		_		
Group	Name	I/O	Туре	Description	
	Rx Data (+ve) ⁴	Out	Analogue	Rx data bit normal	
Data			or CML		
Data	Rx Data (-ve) ⁴	Out	Analogue	Rx data bit inverted	
			or CML		
	Rx ALARM	Out	LVTTL ¹	Out of limits detected in Rx	
Control	Control Rx LOS Tone Out		LVTTL ²	Receiver received signal below limits	
			Analogue	Low frequency tone	
	Vcc (Rx)	ln	Supply	+3.3V supply for Receiver	
Danner	Vcc (Rx Bias)	ln	Supply	+3.3V supply for APD	
Power	GND (Rx)	Out	Supply ³	Ground for Receiver	
	GND (Rx Bias)		Supply ³	Ground for Receiver	
Cleaks	Rx CLK (+ve) ⁴	Out	CML	Rx recovered clock normal (CDR variant only)	
Clocks Rx CLK (-ve) ⁴		Out	CML	Rx recovered clock inverted (CDR variant only)	

- 1. Interfaces to LVCMOS. Active high to indicate out of limits detected in Rx
- 2. Interfaces to LVCMOS. Active high to indicate loss of received signal detected.
- 3. Ground to be DC isolated between signal and module housing
- 4. The Rx Data & Rx CLK signals are AC coupled and have internal 50 Ohm termination.

Table 2 - Receiver Signal Description

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

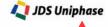
Public Document Release 3

Page 11 of 56

Signal C	Signal Classification		Tyma	De a suintia u	
Group	Name	I/O	Type	Description	
Power	Vcc (Digital)	ln	Supply	+3.3V supply for control circuitry	
Power	GND (Digital)	Out	Supply ¹	Digital Ground	
	SDA	Input / Output	Open Collector	Serial data [External pull-up]	
	SCL	Input	Open Collector	Serial clock [External pull-up]	
	SLA-AD0:2	Input	LVTTL ²	Module address [Internal Pull-up]	
Control	MODULE SENSE	Input	Analogue	1Κ Ω to GND to indicate module is present	
	MODULE ENABLE	Input	LVTTL ²	Module Control [Internal Pull-down] Moves Module from standby mode, where the Tx and Rx are disabled, and the microcontroller is enabled.	

- 1. Ground to be DC isolated between signal and module housing
- 2. Interfaces to LVCMOS.

Table 3 - Control Signal Description


REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 12 of 56

6.2 INPUT / OUTPUT OPERATING PARAMETERS

Parameter	Symbol	Min	Max	Unit			
DATA							
Operating Rate ¹		0.155	2.7	Gbps			
Differential input voltage	Vin _{diff}	400	1000	mVpk-pk			
Differential output voltage ²	Vout _{diff}	200/400	1000	mVpk-pk			
Differential input impedance	Rin	84	116	Ω			
Rx data Output rise time ³			250	ps			
Rx data Output fall time ³			250	ps			
TWO WIRE INTERFACE4 (SDA / S	SCL)						
Bus Frequency	f _{max}		100	kHz			
MODULATION TONE							
Input Voltage⁵	V_{Tin}	0	2.5	Vpk-pk			
Output Voltage	V _{Tout}	0	2.5	Vpk-pk			
Bandwidth ⁶		50	500	kHz			
TX DISABLE							
Input Voltage Low	Vil		0.8	v			
Input Voltage High	Vih	2.4		v			
Disable time			50	ms			
Start up time - controlled ⁷			120	s			
Disabled power			-40	dBm			
TX ALARM							
Output Voltage Low	Vol		0.8	v			
Output Voltage High	Voh	2.4		v			
Activation Time ⁸		500	1000	ms			
De-Activation Time ⁹		500	1000	ms			

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 13 of 56

RX ALARM				
Output Voltage Low	Vol		0.8	V
Output Voltage High	Voh	2.4		V
Activation Time ⁸		500	1000	ms
De-Activation Time ⁹		500	1000	ms
RX LOS ALARM				
Output Voltage Low	Vol		0.8	V
Output Voltage High	Voh	2.4		V
Activation Time		2.3	100	μs
De-Activation Time			100	μs
Activation/Deactivation power		-45	-35	dBm
Hysteresis		0.5	4	dB
MODULE SENSE				
Resistor	Rsense	900	1100	Ω
MODULE ENABLE				
Input Voltage Low	Vil		0.8	v
Input Voltage High	Vih	2.4		v
Deassert time			50	ms
Assert Time ⁷			120	s

- 1. ITU-T / SONET compliance is at 2.488Gbps.
- 2. Differential output voltage relates to the output in AGC or limiting mode (200mV analogue / 400mV CML)
- 3. 20-80% measured.
- 4. Refer to 'The I2C Bus Specification'.
- 5. For a constant tone input voltage, modulation depth is determined by the internal gain setting, and will vary between modules.
- 6. -3dB Bandwidths
- 7. Maximum time taken for module to ramp-up and stabilise power, extinction ratio & wavelength, from power up / tx enable state over supply/temperature extremes.
- 8. Activation time includes hold-off period
- 9. De-Activation time includes hold-on period

Table 4 - Input / Output Electrical Specification

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 14 of 56

6.3 CONTROL AND MONITORING FUNCTIONS

The module has the following control and monitor functions:

	-					
Tx Disable						
0	Normal operation					
1	Laser disabled – default state [internal 100K pull up]					
Tx Alarm						
0	Normal operation					
1	Out of limits detected in Tx circuit [internal 100K pull up]					
Rx Alarm						
0	Normal operation					
1	Out of limits detected in Rx circuit [internal 100K pull up]					
Rx LOS						
0	Normal operation					
1	Received signal input below threshold					
Module Enab	le					
0	Module Standby Default State [internal 100K pull down]					
1	Normal Operation					

Table 5 - Control and Monitoring Truth Table

7 WAVELENGTH

The available wavelengths are based on the ITU-T G.692 grid from 1528.77nm to 1563.86nm with 50GHz spacing. For available wavelengths in the L-band refer to transceiver vendor datasheets.

Nominal Centre Wavelength (nm)	Optical Frequency THz	Nominal Centre Optical Wavelength (nm) Frequency THz
1528.77	196.10	1546.52 193.85
1529.16	196.05	1546.92 193.80
1529.55	196.00	1547.32 193.75
1529.94	195.95	1547.72 193.70
1530.33	195.90	1548.11 193.65
1530.72	195.85	1548.51 193.60
1531.12	195.80	1548.91 193.55
1531.51	195.75	1549.32 193.50
1531.90	195.70	1549.72 193.45

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 15 of 56

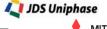
ALCATEL

Nominal Centre	Optical	Nominal Centre	Optical
Wavelength (nm)	Frequency THz	Wavelength (nm)	Frequency THz
1532.29	195.65	1550.12	193.40
1532.68	195.60	1550.52	193.35
1533.07	195.55	1550.92	193.30
1533.47	195.50	1551.32	193.25
1533.86	195.45	1551.72	193.20
1534.25	195.40	1552.12	193.15
1534.64	195.35	1552.52	193.10
1535.04	195.30	1552.93	193.05
1535.43	195.25	1553.33	193.00
1535.82	195.20	1553.73	192.95
1536.22	195.15	1554.13	192.90
1536.61	195.10	1554.54	192.85
1537.00	195.05	1554.94	192.80
1537.40	195.00	1555.34	192.75
1537.79	194.95	1555.75	192.70
1538.19	194.90	1556.15	192.65
1538.58	194.85	1556.55	192.60
1538.98	194.80	1556.96	192.55
1539.37	194.75	1557.36	192.50
1539.77	194.70	1557.77	192.45
1540.16	194.65	1558.17	192.40
1540.56	194.60	1558.58	192.35
1540.95	194.55	1558.98	192.30
1541.35	194.50	1559.39	192.25
1541.75	194.45	1559.79	192.20
1542.14	194.40	1560.20	192.15
1542.54	194.35	1560.61	192.10
1542.94	194.30	1561.01	192.05
1543.33	194.25	1561.42	192.00
1543.73	194.20	1561.83	191.95
1544.13	194.15	1562.23	191.90
1544.53	194.10	1562.64	191.85
1544.92	194.05	1563.05	191.80
1545.32	194.00	1563.45	191.75
1545.72	193.95	1563.86	191.70
1546.12	193.90		

Note: Non-shaded boxes identify nominal wavelengths on 100G grid.

Note: The listed wavelengths are optional and vendors will list available wavelengths on their datasheet.

Table 6 - Available Wavelengths


REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 16 of 56

8 TWO-WIRE INTERFACE FORMAT

All Two-Wire Interface commands are a mandatory requirement.

8.1 ELECTRICAL INTERFACE

The physical layer of the interface shall comply with the Philips specification as defined in 'The Philips I2C Bus Specification' - see Section 1 of this document.

Points to note include:

- a) The I2C mechanical interface will consist of 5 connections within the hot pluggable connector, consisting of the clock (SCL), data (SDA), and 3 address pins.
- b) The bus, not the module, will provide the required pull-up resistors as per section 16.1 of The I2C-Bus Specification.
- c) The bus shall operate in the 100kHz mode.
- d) Address pins are of LVTTL type, positive logic.
- e) The module's address shall be sampled once at power up. This address shall not change until the next power up.
- f) Address lines have internal 100k pull-up resistors.
- g) The module will always take the role of a slave and never a master.

8.2 ADDRESSING

The module uses standard 7-bit addressing. Addressing is controlled by means of hardware settings on the customer board, by use of DIP switches or hard-wired links. The format consists of the first four bits of the address byte set as 0110 and the next three bits of the address byte being used for the hardware setting. The Least Significant Bit (LSB) is used to signify whether a read or write operation is requested. This method will allow up to 8 transceiver modules per 2 wire interface bus.

The format is thus:

	Fixed A	Address		Custo	mer Ad	Read/Write	
T ₃	T ₂	T ₁	T ₀	A_2	A ₁	A_0	R/nW

Where:

 T_3 , T_2 , T_1 , T_0 : Fixed portion of the address – currently 0110

A₂, A₁, A₀: Portion of the address configured externally to the module by customer

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 17 of 56

R/nW:

Read/nWrite Bit - '1' signifies Read operation, '0' signifies Write operation

8.3 COMMAND STRUCTURE

All commands are one byte long. Extra data may be sent or received depending on the command. The command byte is a pre-defined hexadecimal number – in the forthcoming tables it is usually titled 'CMD Number'.

8.3.1 Sending Data

To send a command to the module, first a start condition is asserted, followed by the address of the module, with the LSb (the R/nW bit) clear. If the address matches that of the module, the module will thus acknowledge on the next clock pulse, if the module is busy it will respond with a negative acknowledge (as described in Section 8.3.7). If no further data is to be sent, a stop condition must be asserted. If more data is to be sent, the module will acknowledge each byte until the stop condition is asserted.

8.3.2 Receiving Data

To receive data from the module, e.g. temperature, first a command must be sent. After the module has received the command a START is asserted and the module is addressed for read. The master can thus clock out the appropriate number of bytes from the module. If the module is busy it will respond with a negative acknowledge (as described in 8.3.7) The master must acknowledge the module for every byte received, apart from the last byte, which the master must not acknowledge and send a STOP command. It is very important that the master does NOT acknowledge the last byte, failure to do so can result in being unable to assert the stop condition if a low value has been set on the SDA line by the module.

8.3.3 Reading From And Writing To The Memory

The module will offer a minimum of 32 bytes of customer read/write memory. Both the read and write functions will have their own command. An address byte is also included as part of the command structure, to indicate which location within the memory the data is being read from/written to.

8.3.4 Checksum Byte

To calculate the CHK value, the LSb of the address byte must be considered always as zero despite the value of the R/nW bit.

Master to Slave Checksum

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 18 of 56

The Master to Slave checksum is calculated by XORing all message bytes (except the last one, which is the checksum itself), starting from the Addr|W byte, to the DATAn byte. Note that no data may be sent, in which case only Addr|W and the CMD byte will form the checksum calculation. Prior to verifying the checksum value the Slave should check that the received command is a valid one (an optional command that is not implemented is not a valid command). In the event of an invalid command the slave will answer with an invalid command error and the checksum will not be performed.

Slave to Master Checksum

The Slave to Master Checksum is calculated by XOR-ing all message bytes (except the last one, which is the checksum itself), starting from the Addr|R byte, to the DATAn byte. Note that no data may be returned, in which case only Addr|R and the status byte will form the checksum calculation. (See section 8.3.5.)

8.3.5 Error / Status Byte

After each command is sent, the slave will prepare an answer to indicate the status of the command just received. This status byte will be included within the returned data stream where the command is one that requests data to be read, or to be returned as a single byte stream where the command does not require data to be read.

When the slave finds an error that causes a bit to be changed in the status byte, it should return a TYPE 6 response on receipt of a read enabled address from the master. The master will recognise that there has been an error by the condition of the status byte that it receives in the response and therefore only expect a TYPE 6 format message.

It is the responsibility of the customer to define how to deal with any errors indicated within the status byte – the command could be executed again, or the error simply ignored.

Status Code (Hex)	Description	Notes
00h	ок	Command Executed
01h	Unknown Command	The command code is not supported.
02h	Reserved	Reserved for future use.
03h	Out of Range	At least one parameter of the command is out of range.
04h	Reserved	Reserved for future use.
05h	Check error	The command check byte is not consistent with the value indicated by the check byte.
06h – 08h	Reserved	Reserved for future use.

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 19 of 56

09h	Command not executed	The module is not able to execute according to current conditions.
0Ah – FFh	Reserved	Reserved for future use.

Table 7 - Error / Status Byte

8.3.5.1 Command Structures

A = acknowledge (SDA low)

 \bar{A} = not acknowledge (SDA High)

TYPE 1

If the Master sends a command that requires n bytes of data to be returned:

Master:	START	Addr W		CMD		CHK		STOP
Slave:			Α		Α		Α	

The Slave will return on receipt of a Read Enabled Address (Addr|R) from the Master:

Master:	START	Addr R			Α		Α		Ā	STOP
Slave:			Α	STATUS		DATAn		CHK		

TYPE 2

If the Master sends a command that requires n bytes of data to be written to the Slave:

Master:	START	Addr W		CMD		DATAn		CHK		STOP
Slave:			Α		Α		Α		Α	

The Slave will return the Status Byte only on receipt of an Addr|R from the Master:

Master:	START	Addr R			Α		Ā	STOP
Slave:			Α	STATUS		CHK		

TYPE 3 {Not in current use. Provisioned for future use}

If the Master sends a command that requires n bytes of data to be written to the Slave and m bytes to be read back from the Slave:

Master:	START	Addr W		CMD		DATA		CHK		STOP
Slave:			Α		Α		Α		Α	

The Slave will return on receipt of an Addr|R from the Master:

Master:	START	Addr R			Α		Α		Ā	STOP
Slave:			Α	STATUS		DATA		CHK		

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE

No changes are allowed to this document A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 20 of 56

TYPE 4

The TYPE 4 command is a specific implementation of a TYPE 2 command. If the Master sends a command that requires a byte of data to be written to the Memory at Address X:

Master:	START	Addr W		CMD		ADDR X		DATA		CHK		STOP
Slave:			Α		Α		Α		Α		Α	

The Slave will return the Status Byte only on receipt of an Addr|R from the Master:

Master:	START	Addr R			Α		Ā	STOP
Slave:			Α	STATUS		CHK		

TYPE 5

The TYPE 5 command is a specific implementation of a TYPE 1 command.

If the Master sends a command that requires a byte of data to be returned from the Memory at Address X:

Master:	START	Addr W		CMD		ADDR X		CHK		STOP
Slave:			Α		Α		Α		Α	

The Slave will return the requested byte from Address X after a certain period of time:

Master:	START	Addr R			Α		Α		Ā	STOP
Slave:			Α	STATUS		DATA		CHK		

TYPE 6

If the Master sends a command only:

Master:	START	Addr W		CMD		CHK		STOP
Slave:			Α		Α		Α	

The Slave will return the Status Byte only on receipt of an Addr|R from the Master:

Master:	START	Addr R			Α		Ā	STOP
Slave:			Α	STATUS		CHK		

8.3.6 Clock Stretching

After being addressed, or after every byte transferring from the host to the module, or before every byte transferring from the module to the host, the module will be permitted to hold the 'SCL' (clock from the master bus) line low whilst the on board processor readies data for either reception or transmission. The time for which the clock is held low (stretched) must not exceed 1ms.

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 21 of 56

8.3.7 Module Busy

If the module is performing a real-time task, and must not be interrupted, and the master sends an Addr|W| (command), the module will send \bar{A} . The master will thus send a STOP bit and then wait (minimum 10ms) before re-sending the message.

Master:	START	Addr W		STOP
Slave:			Ā	

If the module is performing a real-time task, and must not be interrupted, and the master sends an Addr|R, the module will send \bar{A} . The master will thus send a STOP bit and then wait (minimum 10ms) before re-sending the message.

If the module is preparing data to answer an Addr|W (command), but has not yet completed the task, and the master sends an Addr|R, the module will send \bar{A} . The master will thus send a STOP bit and then wait (minimum 10ms) before re-sending the message.

Master:	START	Addr R		STOP
Slave:			Ā	

9 COMMAND SET DETAILS

9.1 STATIC DATA

All static data is a mandatory requirement.

The static data stored in memory is listed in the table below. The TYPE 1 command structure is shown in section 8.3.5.1.

Command Name	CMD ¹ Number	Parameter	Target	Bytes	Туре
IND ²	01h	Identifiers	Type of transceiver	1	1
ITU ³	02h	Tuning Range	Number of ITU channels (ie 1 for fixed)	1	1
CON ⁴	03h	Connector	Code for optical connector type	1	1
BRN	04h	Bit Rate, Nominal	Nominal bit rate, units of 100Mbps	1	1
LTH ^A	05h	Length	Link length supported for 9/125mm fibre, units of 10km	1	1

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 22 of 56

	Г	1	1		
VEN ⁵	06h	Vendor Name	Module Vendor Name (HEX)	1	1
PPN	07h	Vendor Part Number Leading character first	Product Part No. provided by module vendor (ASCII)	16	1
REV ^B	08h	Vendor Product Release LSB first	Revision level for part (HEX)	2	1
LWA ^c	09h	Wavelength LSB first	Laser Wavelength in tenths pm	4	1
SER	0Ah	Vendor Serial Number Leading character first	Serial number provided by vendor (ASCII)	16	1
DAT ^D	0Bh	Date code LSB first	Vendor's manufacturing date code	4	1
ОРТ	0Ch	Optional Features	Implemented Optional Features (See Section 9.2)	1	1
Reserved	0Dh - 10h	Reserved	Reserved for future static data	TBD	

1. CMD number is the actual data sent as the 'Command Byte'

2. Type of Transceiver

01h	Fixed, 100GHz spacing, 2.5Gbps	42h	OC-48 LR-1 SONET (1550nm)
02h	Fixed, 50GHz spacing, 2.5Gbps	51h	CWDM
11h	Fixed, 100GHz spacing, 10Gbps	61h	Tx only, fixed, 100Ghzspacing, 2.5Gbps
12h	Fixed, 50GHz spacing, 10Gbps	62h	Tx only, fixed, 50Ghzspacing, 2.5Gbps
21h	Tuneable, 100Ghz Spacing, 2.5Gbps	63h	Tx only, fixed, 100Ghz spacing, 10Gbps
22h	Tuneable, 50Ghz Spacing, 2.5Gbps	64h	Tx only, fixed 50GHz spacing, 10Gbps
31h	Tuneable, 100Ghz Spacing, 10Gbps	65h	Tx only, Tuneable, 100Ghzspacing, 2.5Gbps
32h	Tuneable, 50Ghz Spacing, 10Gbps	66h	Tx only, Tuneable, 50Ghzspacing, 2.5Gbps
41h	OC-48 LR-1 SONET (1310nm)	71h	Rx only

3. Tuning Range

1 = fixed n = n channels (ie 8 = 8 channels)

4. Connector

1 = Simplex LC 3 = Simplex MU 2 = Duplex LC 4 = Duplex MU

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE

No changes are allowed to this document A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 23 of 56

5. Vendor

01 = Agilent Technologies 02 = Bookham Technology

03 = Triquint Optoelectronics 04 = Alcatel Optronics

05 = Mitsubishi Electric 06 = JDS Uniphase

07 = NEC 08 = OKI

09 = Sumitomo Electric

A. LTH (Link Length in 10's km)

Format: one byte holding number of 10km units. No decimal encoding.

B. REV (Revision Level)

Format: two bytes representing Major and Minor revision numbers. Both types to use packed BCD, giving revision numbers from 00.00 to 99.99.

Byte order: Minor revision sent first

C. LWA (Wavelength in tenths pm)

Format: Four bytes holding wavelength in packed BCD format. Number left justified so MSB holds wavelength band.

Example: 1541.75

Hex: 15 41 75 00

Decimal: 21 65 117 00

Byte order: LSB (Units and tenths of pm) sent first.

D. DAT (Date of manufacture)

Format: Four bytes holding the Year, Month and Day in packed BCD format.

Example: 31st July 2002

Hex: 31 07 02 20

Decimal: 49 07 02 32

Byte order: Day sent first followed by month, year and century.

Table 8 - Static Data Command Set

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 24 of 56

9.2 OPTIONAL FEATURES

The OPT command (0Ch) is a TYPE 1 command, and will return the 1-byte status of the Transceiver Optional Features as below. The TYPE 1 command structure is shown in section 8.3.5.1. NOTE: Byte count does not include the command and checksum

The following table lists a proposal structure for the OPT byte. "1" means that the specific feature is implemented, "0" that is not implemented.

7	6	5	4	3	2	1	0
Reser	ved for futu	re use	Tone input/ output	VOA	VDT	TUN	CDR

Table 9 - Optional Command Structure

9.3 DIAGNOSTIC MONITORING.

9.3.1 Live Data

All Live Data is a mandatory requirement.

The TYPE 1 command structure is shown in section 8.3.5.1.

Command Name	CMD Number	Parameter	Description	Bytes	Туре
TEC	11h	Laser Temperature LSB and MSB LSB First	Signed 2's complement integer temperature. Return in 16 bit value in 1/10ths of a degree (i.e. 345 = 34.5C)	2	1
ТМР	12h	Module Temperature LSB and MSB LSB First	Signed 2's complement integer temperature. Return in 16 bit value in 1/10ths of a degree (i.e. 345 = 34.5C)	2	1
BIA	13h	Laser Bias Current LSB and MSB LSB First	Return the laser bias current in mA. Result is returned as an unsigned 16 bit value in 1/10ths of a mA.	2	1
MOD	14h	Laser Mod Current LSB and MSB	Return the laser mod current in mA. Result is returned as an unsigned 16	2	1

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE

No changes are allowed to this document A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 25 of 56

		LSB First	bit value in 1/10ths of a mA.		
POT ¹	15h	TX Power LSB and MSB LSB First	Return measured TX output power in μW. Represented as an un-signed 16 bit integer in μW.	2	1
POR ¹	16h	RX Power LSB and MSB LSB First	Return measured RX input power in μW. Represented as an un-signed 16 bit integer in 1/10's of a μW.	2	1
APV	17h	APD Voltage supply LSB and MSB LSB First	Return measured APD supply voltage. Represented as an unsigned 16 bit integer in 1/10ths of a Volt	2	1
Reserved	18h - 1Ch	Reserved	Reserved for future live data	tbd	

^{1.} The required resolution is not an indicator of the required accuracy

Table 10 - Live Data Command Set

9.3.2 Transceiver Status

The STA command (1Dh) is a TYPE 1 command, and will return the 1-byte status of the Transceiver as below. The TYPE 1 command structure is shown in section 8.3.5.1.

7	6	5	4	3	2	1	0
Laser Status	Alarm Triggered	Warning Triggered	Module Disabled	Ve	ndor Speci	fic Status E	Bits

Bit Set = Flag Triggered

Bit Clear = Module OK, no Alarms or Warnings triggered

Table 11 - Status Command Structure

Laser Status is indicated by a 1 = Operating (presence of light), and 0 = Disabled (no light).

'Alarm Triggered' is flagged by any of the alarms in section 9.3.1, and 'Warning Triggered is flagged by any of the un-masked warnings in section 9.3.3.

Module disabled is the inverted logic value of the hardware pin 'Module Enable' and is used to indicate the module status Disabled/Enabled.

The vendor specific status bits will be defined through a vendor specific table.

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE

No changes are allowed to this document A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 26 of 56

9.4 ALARMS AND WARNINGS

Tx_ALARM (or Rx_ALARM) hardware pins are to be used as an interrupt if either the alarm or warning flags indicate an event occurred. The pins will also be asserted when Module Enable is de-asserted.

The customer will reset the alarms by sending the reset commands 'RST and/or RSR' – see Section 9.4:-Control Functions.

9.4.1 Alarms (All Alarms are a mandatory requirement)

Alarm flags indicate conditions likely to result (or have resulted) in module failure or out of specification operation and indicate cause for immediate investigation. These events are non-mask-able, and any alarm that occurs will result in TX and/or RX being shut down.

Command Name	CMD	Bit	Name	Description	Action	Туре
		7	Module Temp High Alarm	Set when module temperature exceeds high alarm level	Shut down TX and RX	1
		6	Module Temp Low Alarm	Set when module temperature is below low alarm level	Shut down TX and RX	1
ALA		5	Wavelength Maximum	Set when wavelength exceeds high alarm level	Shut down TX only	1
		4	Wavelength Minimum	Set when wavelength is below low alarm level	Shut down TX only	1
(1Byte)	1Eh	3	Tx Power High Alarm	Set when Tx Output power exceeds high alarm level	Shut down TX only	1
		2	Tx Power Low Alarm	Set when Tx Output Power is below low alarm level	Shut down TX only	1
		1	APD Bias Voltage	Set when APD Voltage exceeds high Alarm level	Shut down RX only	1
		0 ¹	Module Time Out	Set when the module does not reach full operating status within a set start-up time	Shut down TX only	1

^{1.} Module time out is TX dependant failure during start-up, also asserting the TX Alarm. RX failure during start-up will assert the Rx Alarm only.

The TYPE 1 command structure is shown in section 8.3.5.1.

Table 12 - Alarm Flag Structure

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 27 of 56

9.4.2 Alarm Trip Points

The activation of an alarm will indicate to the user that a major malfunction or out of tolerance condition has occurred.

This condition will affect traffic through part of the module, could affect other channels or lead to damage to the module.

When an alarm is detected the module will shutdown itself (Tx and/or Rx in function of which alarm was detected) to prevent further damage and to prevent any possible impact to traffic on other channels. If a Module Temp High or Module Temp Low occur the module will be shut down (both Tx and Rx) and to reset the module the customer must send both RST and RSR.

During warm-up, specific alarm activation is disabled, with the exception of Module time-out, Module Temp High and Module Temp Low.

ALA 07	Module Temp High	TMPmax +5% of TMPmax - TMPmin
ALA 06	Module Temp Low	TMPmin -5% of TMPmax - TMPmin
ALA 05	Wavelength High	+ channel spacing/2
ALA 04	Wavelength Low	- channel spacing/2
ALA 03	Tx Power High	POTnom +50%
ALA 02	Tx Power Low	POTnom -50%
ALA 01	APD Voltage High	APVmax +15%
ALA 00	Start Up Time Out	Start-up Time (Controlled) + 10 seconds

Note:- The values in this table are for guidance purposes only. The vendor determines alarm level trip points.

Table 13 - Normalised Alarm Activation Levels

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 28 of 56

9.4.3 Warnings (All Warnings are a mandatory requirement)

Warning flags generally can be used to indicate end of life conditions (such as for higher than expected bias currents in a constant power control loop). These events will assert the relevant hardware alarm, but are mask-able pending host controller intervention. Masking will de-assert the relevant hardware alarm. If the reason for the warning goes away, the warning should be de-asserted automatically at both hardware and software levels, without the host having to mask the warning. The warning masks are set at 1 (all enabled) by default. The default value will be loaded when a TX or RX reset command occurs.

Command Name	CMD	Bit	Name	Description	Туре
		7	LD Current Warning High	Set when Ibias or Imod exceeds max warning level	1
	6		Module Temp High Warning	Set when module temp exceeds max warning level	1
		5	Module Temp Low Warning	Set when module temp exceeds min warning level	1
WAA	AA 1Fh 4		TEC Current warning maximum	Set when TEC Current exceeds max warning level	1
		3	Rx Optical Power High Warning	Set when Received Power exceeds high warning level	1
		2	LOS	Loss Of Signal	1
	1		LOL	Loss Of Lock (CDR Variant Only)	1
	0		Wavelength Warning	Set when wavelength drift exceeds vendor specific limit	1

The TYPE 1 command structure is shown in section 8.3.5.1.

Table 14 - Warning Flag Structure

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 29 of 56

Command Name	CMD	Function	Bytes	Туре
MAS	20h	Sets the Masking byte for the warnings. The masking byte will be ANDed with the warning byte to define which warning will trigger Tx_ALARM or Rx_ALARM. Mask corresponds to the bit numbers in command WAA. Use 1 to define warning triggered, 0 to define warning ignored.	1	2
MAR	21h	Reads the Masking byte for warnings	1	1

TYPE 1 and TYPE 2 command structures are shown in section 8.3.5.1.

Table 15 - Warning Flag Masking byte

9.4.4 Warning Trip Points

The activation of a warning will indicate to the user that the module is approaching an out of range condition on a parameter(s).

Should this out of range actually occur, an Alarm condition may result, traffic may be affected or the module will fail to meet its performance requirements.

A warning condition will not affect the modules ability to meet its performance requirements and can be software masked.

WAA 07	LD Current High	>= BIAmax - 25% or MODset +20%
WAA 06	Module Temp High	>= TMPmax - 5% of TMPmax-TMPmin
WAA 05	Module Temp Low	<= TMPmin +5% of TMPmax-TMPmin
WAA 04	TEC Current High	>= Itecmax -5%
WAA 03	Rx Power High	>= PORmax -5%
WAA 02	Loss Of Signal	Loss Of Signal
WAA 01	Loss Of Lock (CDR variant only)	Loss of CDR Lock
WAA 00	Wavelength Warning	>< Normal wavelength Range

Note:- The values in this table are for guidance purposes only. The vendor determines warning level trip points.

Table 16 - Normalised Warnings

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 30 of 56

9.5 CONTROL FUNCTIONS

These commands perform basic control functions required during set up of the module by the customer. TYPE 1, TYPE 2, and TYPE 6 command structures are shown in section 8.3.5.1.

Command Name	CMD Number	Parameter	Function	Operand	Bytes	Туре
CHN⁴	22h	Set Operating State	Sets the current operating channel, or disables optical output	00h = Transmitter Disabled 01h = Channel 1	1	2
CHR⁵	23h	Read Operating state	Reads the current operating channel set by CHN	Command Only	1	1
DEF ⁸	24h	Set Default Power On State	Sets the default power on state of the module	00h = Transmitter Disabled 01h = Channel 1	1	2
DER⁵	25h	Read Default Power On State	Reads the default power on state of the module	Command Only	1	1
TUN ³	26h	Set Wavelength Fine Adjustment State	Set Fine adjustment of wavelength	Signed 2's complement digital number.	1	2
TUR⁵	27h	Read Wavelength Fine Adjustment State	Reads Fine adjustment of wavelength	Command Only	1	1
SOP ⁸	28h	Store Wavelength Operating Point	Store new wavelength operating point	Command Only	0	6
RST ¹	29h	Resets TX	Resets TX	Command Only	0	6
RSR ²	2Ah	Resets RX	Resets RX	Command Only	0	6
ROP⁵	2Bh	Read Stored Wavelength Operating Point	Reads wavelength operating point	Command Only	1	1
VTH ^{4,9}	2Ch	Set Variable Threshold	Sets Variable Threshold Level	Signed Number	2	2

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 31 of 56

Reserved	60h-	Reserved	Reserved for factory calibration	Factory Use	TBD	TBD
Reserved	35h-3Fh	Reserved	Reserved for future control functions	Reserved	TBD	TBD
ROANV⁵	34h	Read Stored Optical Attenuation value	Reads Stored Optical Attenuation value	Unsigned Number	2	1
SOA ⁸	33h	Store Current Optical Attenuation value	Stores Current Optical Attenuation value	Command Only	0	6
ROA⁵	32h	Read Optical Attenuation Adjust	Reads Optical Attenuation adjustment	Unsigned Number	2	1
VOA⁴	31h	Set Variable Optical Attenuation	Sets Optical Attenuation adjustment	Unsigned Number	2	2
RTHEN ⁷	30h	Enable / Disable Variable Threshold	Enables / Disables Variable Threshold	Unsigned Byte	1	2
RTHNV⁵	2Fh	Read stored Threshold value	Reads stored Threshold value	Signed Number	2	1
STH ⁶	2Eh	Store Current Threshold Value	Stores Current Threshold Value	Command Only	0	6
RTH⁵	2Dh	Read Variable Threshold	Reads Variable Threshold point	Signed Number	2	1

- Clears hardware Tx Alarm, restores defaults using last wavelength stored via the SOP command, restores warning
 mask default and restarts transmitter.
- 2. Clears hardware Rx Alarm, restores defaults, restores warning mask default and restarts receiver.
- The TUN command allows the wavelength to be increased or decreased. The actual wavelength change will be module and supplier specific.
- 4. The value is used and stored in volatile memory
- 5. The value is used and read from volatile memory
- The value is stored in non-volatile memory. This value is loaded from non-volatile memory on power up or when a RSR command occurs.
- 7. Value of 0 disables Variable Threshold. Module powers up in nominal threshold (50%) state. The value set through the Threshold Commands has no effect on the crossing voltage until enabled.
- 8. The value is stored in non-volatile memory. This value is loaded from non-volatile memory on power up or when a RST command occurs
- 9. A threshold value of zero indicates that the crossing is at the factory default setting. Threshold values less / greater than zero shift the threshold voltage down / up.

Table 17 - Control Functions Structure

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 32 of 56

9.6 CUSTOMER FUNCTIONS

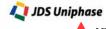
At least 32 bytes of memory have been reserved for customer requirements.

The customer will be able to write to and read from the reserved area of the non-volatile memory for customer use on a byte by byte basis

Command	CMD Number	Parameter	Data	Size	Туре
WRI ¹	40h	Customer Memory Write	Customer can write data to the memory locations reserved for customer use.	1 byte at a time	4
REA ²	41h	Customer Memory Read	Customer can read data from the memory locations reserved for customer use.	1 byte at a time	5
Reserved	42h - 4Fh	Reserved	Reserved for future customer functions	TBD	TBD

- 1. A TYPE 4 command structure (see section 8.3.5.1) is utilised in order to allow single byte writes to the reserved area of the memory for customer use.
- 2. A TYPE 5 command structure (see section 8.3.5.1) is utilised in order to allow single byte reads from the reserved area of the memory for customer use.

Table 18 - Customer Memory Functions


REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 33 of 56

10 TONE INPUT/OUTPUT (TONE INPUT/OUTPUT IS AN OPTIONAL FUNCTION)

The modulation input allows amplitude modulation of the "1"s level in the frequency range of 50 - 500 KHz. This input must be driven from a 50 Ohm source, and is AC coupled internally. Do not exceed the maximum drive level, over driving this input can cause waveform distortion. If unused this input should be connected to 0V to prevent noise pickup. The output is AC coupled and dependant on received power and modulation depth.

11 POWER SUPPLY REQUIREMENTS

The module requires a single supply of $+3.3V \pm 5\%$.

Parameter	Min	Nom	Max	Units
Vcc Supply	3.135	3.3	3.465	V
Power Consumption			7	w

1. Maximum continuous current is limited by the connector rating.

Table 19 - Power Supply Requirements

Supply Rail	Max	Units	Conditions
Vcc Supply Noise	50	mVpp	6kHz – 1MHz

Table 20 - Power Supply Noise Requirements

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 34 of 56

11.1 HOT SWAP AND POWER-ON-RESET

When a hot pluggable Transceiver is inserted the peak in-rush currents to any supply rail shall be limited by the host power supply. The host will maintain a constant maximum current and not foldback. The module will not attempt to start operating or require TEC current until the supply voltage has reached the minimum operating voltage. The module must exit the Power On Reset condition at a voltage in the V_{INIT} range.

Parameter	Symbol	Min	Max	Units
Module Initialisation Voltage	V _{INIT}	2.5	3.0	V

Module user to ensure that the maximum current rating of the connector is not exceeded

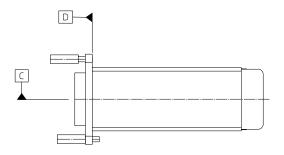
Table 21 - Module Initialisation Voltage

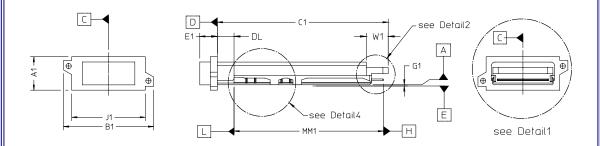
When Module Enable is held low, the Tx and Rx elements of the module will be disabled and the Tx and Rx Alarm pins will be asserted. The micro-controller must always be enabled to allow it to be interrogated by the host. The module will not enter the enabled state until Module Enable is taken high.

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 35 of 56





12 MECHANICAL DESCRIPTION

12.1 PHYSICAL ARRANGEMENT (FRONT PANEL MOUNT)

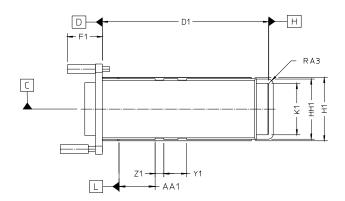


Figure 2 - Mechanical Outline (Faceplate Mount)

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE

No changes are allowed to this document A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 36 of 56

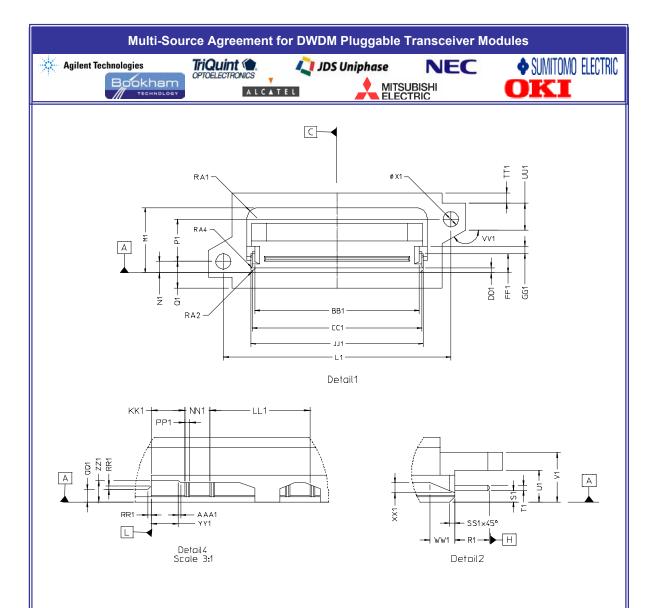


Figure 3 - Mechanical Outline - Details

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE No changes are allowed to this document

A printed version of this document is an uncontrolled copy

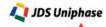
Public Document Release 3

Page 37 of 56

ALCATEL

KEY	VALUE	TOLERANCE	COMMENT
NET	(mm)	(mm)	COMMENT
A1	19.0	+/- 0.1	Height of bezel overall
B1	51.3	+/- 0.2	Width of bezel overall
C1	97.5	REF	Length of transceiver body from datum D to end of rear shoulder
D1	94.8	+/- 0.3	Datum D to datum H
DL	9.5	+/- 0.3	Datum D to datum L
E1	10.0	Max	Datum D to front of module body, in-board as well as front-panel mount options
F1	20.0	Max	Datum D to end of captive thumb screws
G1	0.5	N/A	Vertical stand-off of transceiver body from host circuit card
H1	36.0	+/- 0.15	Width of transceiver body, overall width of in-board mount transceiver
J1	42.0	+/- 0.2	Width of bezel without side flanges
K1	29.2	Ref.	Width of transceiver circuit card
L1	45.5	+/- 0.2	Distance between holes for captive thumb screw centres in 'X' axis
M1	12.9	+0.0 - 0.3	Height of transceiver body, overall height of in-board mount transceiver
N1	2.25	+/- 0.3	Vertical distance from datum A to bottom hole for captive thumb screw centre
P1	8.4	+/- 0.1	Vertical distance between holes for captive thumb screw centres
Q1	5.3	+/- 0.1	Vertical distance from bottom of bezel to hole for captive screw
R1	6.9	+/- 0.2	Datum H to end of recess for electrical edge connector
S1	2.3	+/- 0.15	Datum A to bottom of transceiver PCB
T1	1.0	Ref.	Transceiver PCB thickness
U1	6.3	Min	Datum A to underside of rear shoulder
V1	9.85	+/- 0.2	Height of rear shoulder from Datum A
W1	12.5	Min	Length of rear shoulder
X1	N/A	N/A	Holes for M3 captive thumb screws
Y1	13.0	+/- 0.2	Pitch of vertical slots for plugging
Z 1	5.0	+/- 0.2	Width of vertical slots for plugging
AA1	20.6	+/- 0.2	Datum L to first vertical slot for plugging
BB1	33.0	+/- 0.2	Width of module slot to accommodate rail
CC1	34.0	+/- 0.2	Width of module slot to accommodate location features on rail
DD1	1.0	+/- 0.15	Datum A to base of module slot to accommodate location features on rail
FF1	3.8	+/- 0.15	Datum A to base of module slot to accommodate rail
GG1	1.5	+/- 0.2	Height of module slot to accommodate rail

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE No changes are allowed to this document


A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 38 of 56

HH1	34.2	+/- 0.2	Width of PCB rear shoulder
JJ1	34.6	+/- 0.2	Outer width of module slot to accommodate rail
KK1	6.6	+/- 0.2	Datum L to first rail location feature
LL1	20.0	+/- 0.2	Pitch of rail location features
MM1	85.3	+/- 0.2	Datum H to Datum L
NN1	5.0	+/- 0.2	Pitch of rail location features
PP1	1.0	+/- 0.2	Width of rail location features
QQ1	2.5	+/- 0.15	Datum A to bottom of hard stop
RR1	0.75	+/- 0.1	Depth of chamfer on hard stop
SS1	1.0	+/- 0.1	Size of chamfer on bottom corner of module adjacent to electrical connector
TT1	2.1	+/- 0.2	Top of side flange to top of bezel
UU1	5.4	+/- 0.2	Outer height of side flange
VV1	150°	+/- 1°	Angle of chamfer on side flange
WW1	5.0	+/- 0.5	Length of chamfer into slot for rail
XX1	2.0	+/- 0.5	Height of chamfer into slot for rail
YY1	5.25	+/- 0.1	Datum L to chamfer on vertical location feature
ZZ1	4.2	+/- 0.1	Datum A to vertical location feature
AAA1	0.6	+/- 0.1	Depth of chamfer on vertical location feature
RA1	2.0	Min	External radius or chamfer on transceiver lid
RA2	1.0	Min	External radius or chamfer on transceiver base
RA3	3.0	+/- 0.5	External radius on rear shoulder
RA4	0.3	Ref.	Internal radius on module slot to accommodate location features on rail

N.B. For in-board mount option please refer to dimensions E1, H1 and M1.

Table 22 - Definition of Transceiver Module Dimensions

DATUM	DESCRIPTION
Α	BOTTOM SURFACE OF TRANSCEIVER BODY
С	CENTRAL VERTICAL PLANE OF TRANSCEIVER BODY
D	BACK SURFACE OF MODULE BEZEL, SAFETY HARD STOP
E	TOP SURFACE OF HOST PCB
Н	BACK FACE OF TRANSCEIVER PCB
L	VERTICAL FACE OF MODULE HARD STOP, HARD STOP ON RAIL

Table 23 - Definition of Transceiver Module Datums

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 39 of 56

12.2 PHYSICAL ARRANGEMENT (IN-BOARD MOUNT)

Module body footprint for in-board mount modules remain the same with the exception to the front flange, which may not exceed dimensions E1, H1, and M1.

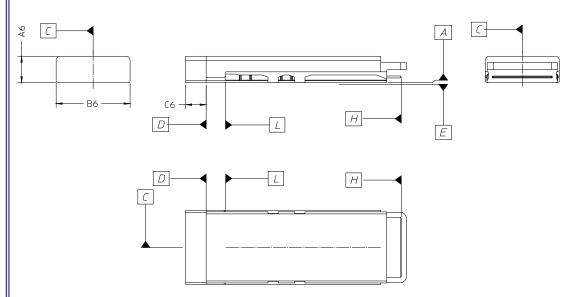


Figure 4 - Mechanical Outline (In-board Mount)

KEY	VALUE (mm)	TOLERANCE (mm)	COMMENT
A6	12.9	Ref.	Height of transceiver body, overall height of in- board mount transceiver
В6	36.0	Ref.	Width of transceiver body, overall width of in-board mount transceiver
C6	10.0	Max.	Datum D to front of module body, in-board as well as front-panel mount options

Table 24 - Definition of In-board Transceiver Module Dimensions

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 40 of 56

Multi-Source Agreement for DWDM Pluggable Transceiver Modules Agilent Technologies TriQuint OPTOELECTRONICS ALCATEL MITSUBISHI ELECTRIC

12.3 CUSTOMER FACEPLATE & BOARD PROFILE

Host Board and Face Plate

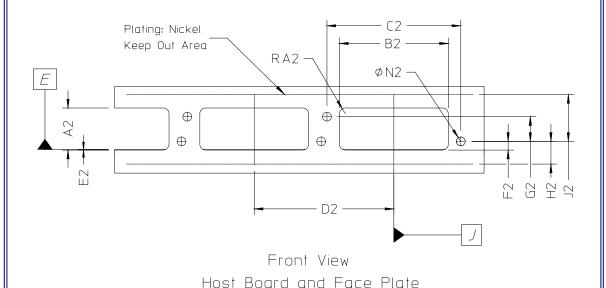
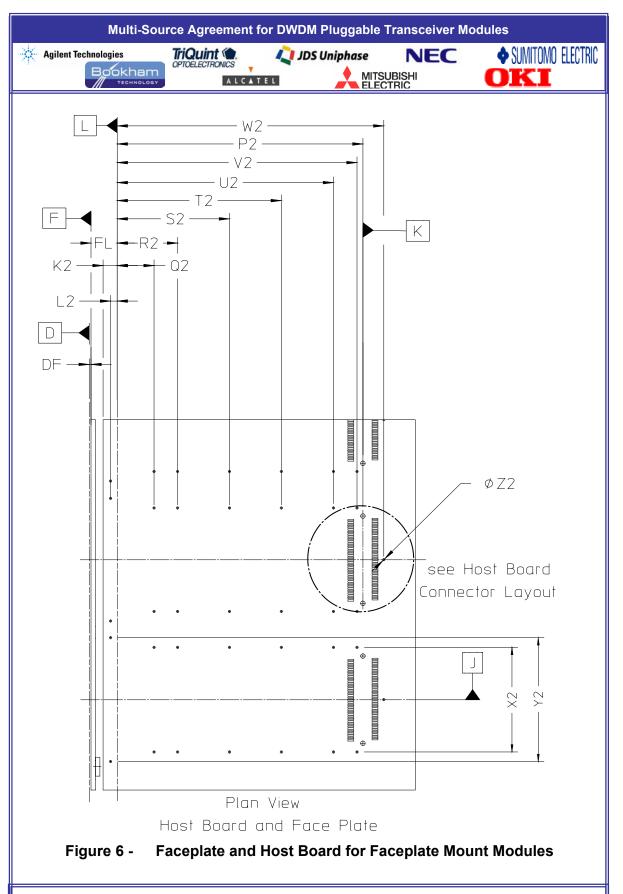



Figure 5 - Side View and Front View of Host PCB and Face Plate

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 41 of 56

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

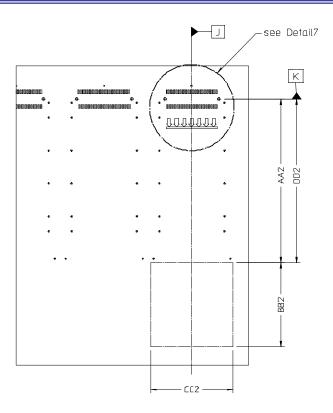
Public Document Release 3

Page 42 of 56

Multi-Source Agreement for DWDM Pluggable Transceiver Modules ◆ SUMITOMO ELECTRIC TriQuint . NEC Agilent Technologies **IDS** Uniphase Bookham TECHNOLOGY MITSUBISHI ELECTRIC OKI ALCATEL 29.6 4.1 see Pad Detail--PIN 70 PIN 36 Ø 1.55 PIN 1 PIN 35 13.8 Host Board Connector Layout - 0.50 Pad Detail

Figure 7 - Host Board Connector Layout

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE


No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 43 of 56

Multi-Source Agreement for DWDM Pluggable Transceiver Modules Agilent Technologies TriQuint OPTOELECTRONICS ALCATEL MITSUBISHI ELECTRIC

Plan View
In-Board Mount Keep Out Area

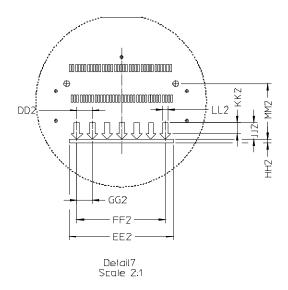


Figure 8 - Host Board Keep Out Areas for In-Board Mount Modules

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 44 of 56

	VALUE	TOLERANCE	
KEY	(mm)	(mm)	COMMENTS
A2	14.3	+/- 0.15	Cut-out in host face plate, 'Y' axis
B2	37.0	+/- 0.15	Cut-out in host face plate, 'X' axis
C2	45.5	+/- 0.2	Distance between mounting holes for captive thumb screws, 'X' axis
D2	47.47	Min	Distance between adjacent transceiver modules
E2	0.2	+/- 0.3	Datum E to bottom of cut-out in host face plate
F2	2.95	+/- 0.15	Lower mounting hole to bottom of cut-out in host face plate
G2	8.4	+/- 0.15	Distance between mounting holes for captive thumb screws, 'Y' axis
H2	6.3	Min	Distance between lower mounting hole and bottom of keep out on host face plate, 'Y' axis
J2	14.7	Min	Distance between lower mounting hole and top of keep out on host face plate, 'Y' axis
K2	4.8	+/- 0.2	Datum L to front edge host PCB edge
L2	2.25	+/- 0.2	Datum L to first plated through holes on host PCB for rail
N2	М3	0.2 Positional	Hole tapped for M3 captive screws
P2	83.4	+/- 0.2	Datum L to Datum K
Q2	12.5	+/- 0.2	Datum L to second plated through holes in host PCB for rail
R2	20.5	+/- 0.2	Datum L to third plated through holes in host PCB for rail
S2	38.1	+/- 0.2	Datum L to fourth plated through holes in host PCB for rail
T2	55.7	+/- 0.2	Datum L to fifth plated through holes in host PCB for rail
U2	73.4	+/- 0.2	Datum L to sixth plated through holes in host PCB for rail
V2	81.4	+/- 0.2	Datum L to seventh plated through holes in host PCB for rail
W2	90.5	+/- 0.2	Datum L to eighth plated through hole in host PCB for rail
X2	35.5	+0, -0.2	Distance between inner mount holes for rail, 'X' axis
Y2	42.0	+0, -0.2	Distance between outer mount holes for rail, 'X' axis
Z2	8.0	+0.1 / -0	Diameter of plated through holes for rail
AA2	87.9	+/- 0.5	Datum K to inner edge of keep out area for in-board mount option
BB2	45.0	+/- 0.5	Depth of keep out area for in-board option
CC2	45.0	+/- 0.5	Width of keep out area for in-board option
EE2	28.2	+/- 0.2	Width of reference stop line of host card PCB for in-board mount
FF2	24.0	+/- 0.2	6 pitches of GG2
GG2	4.0	+/- 0.2	Individual pitch between arrow
HH2	0.9	+/- 0.2	Length of reference stop line of host card PCB for in-board mount
JJ2	4.6	+/- 0.2	Overall length of arrow
KK2	3.0	+/- 0.2	Length of arrow

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE

No changes are allowed to this document A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 45 of 56

LL2	1.5	+/- 0.2	Width of arrow
MM2	15	+/- 0.2	Location position of reference stop line of host card PCB for in-board mount
RA2	2.0	Max	Internal radii for cut-out in host face plate

Table 25 - Definition of Host Card / Face Plate Dimensions

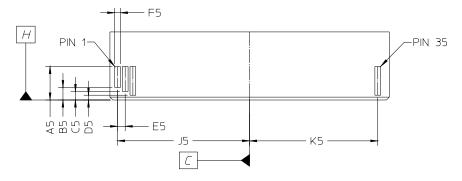
DATUM	DESCRIPTION		
E	Top surface of host PCB		
F	Front surface of host face plate		
J	Centre vertical plane of rail system		
L	Vertical face of module hard-stop, hard-stop on rail.		
К	Centre of 70 way edge connector mounting holes		

Table 26 - Definition of Host Card / Face Plate Datums

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 46 of 56



12.4 MODULE ELECTRICAL CONNECTOR

Bottom View
Transceiver Electrical Connector

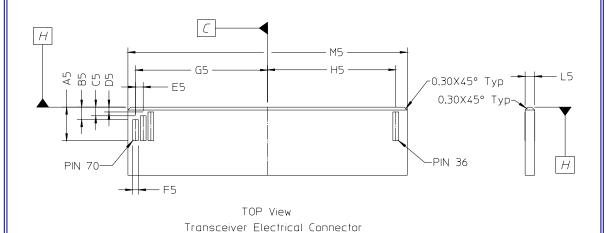


Figure 9 - Module Electrical Connector Pad Definition

KEY	VALUE (mm)	TOLERANCE (mm)	COMMENTS
A5	3.5	Min Typ	Datum H to rear of connector pins
B5	1.3	+/-0.05	Datum H to typical signal connector pin
C5	0.9	+/-0.05	Datum H to typical power connector pin
D5	0.5	+/-0.05	Datum H to typical ground connector pin
E5	0.8	+/-0.05	Distance between connector pins
F5	0.6	+0.05	Width of connector pins

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE

No changes are allowed to this document A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 47 of 56

G5	13.8	Ref.	Datum C to PIN 70
H5	13.4	Ref.	Datum C to PIN 36
J5	13.4	Ref.	Datum C to PIN 1
K5	13.8	Ref.	Datum C to PIN 35
L5	1.0	+/-0.1	Transceiver PCB thickness over pins
M5	29.2	+/-0.1	Width of transceiver circuit card

Table 27 - Module Electrical Connector Dimensions

DATUM	DESCRIPTION 70 WAY ELECTRICAL CONNECTOR		
С	Centre vertical plane of transceiver body.		
Н	Back face of transceiver PCB.		

Table 28 - Definition of Electrical Connector Datums

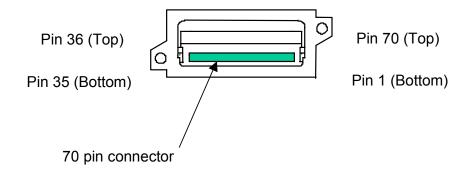


Figure 10 - Rear View of Module Showing Relative Pin Positions

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 48 of 56

Multi-Source Agreement for DWDM Pluggable Transceiver Modules Agilent Technologies TriQuint Option JDS Uniphase OPTION OF TECHNOLOGY 12.5 PCB MOUNT RAIL SYSTEM

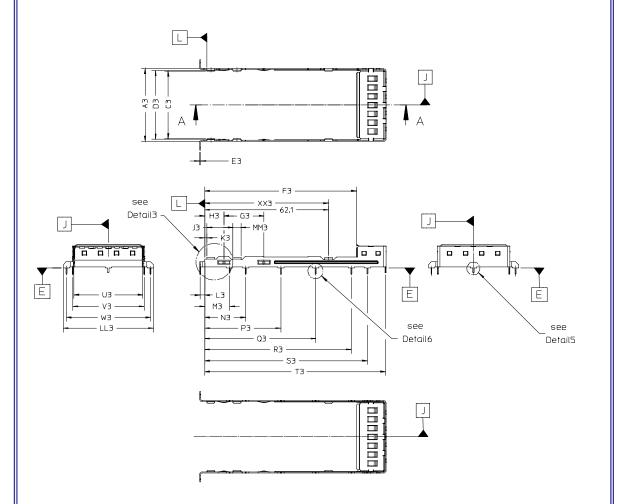


Figure 11 - Host Rail System Outline Drawing

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE

No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 49 of 56

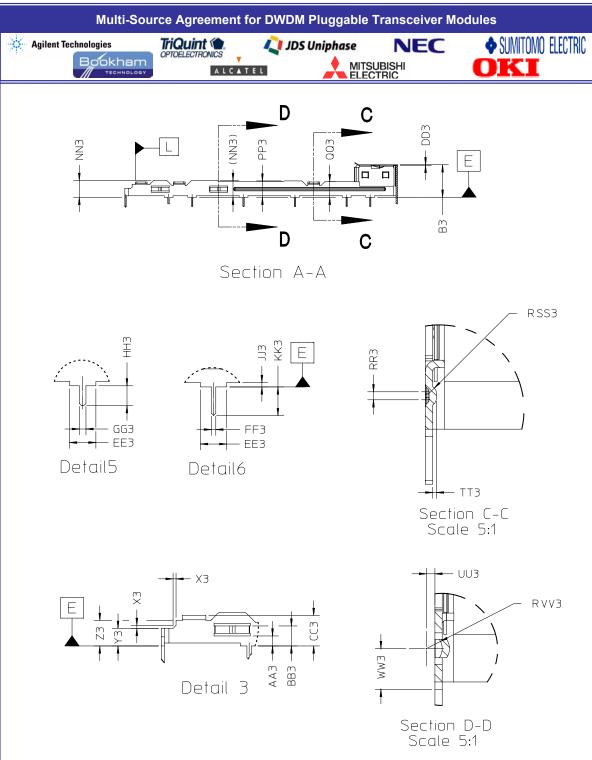


Figure 12 - Host Rail System Details

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 50 of 56

KEY	VALUE (mm)	TOLERANCE (mm)	COMMENTS	
A3	36.0	+0 / -0.2	Overall width of body of rail system.	
B3	11.05	+/-0.2	Datum E to top of rail system	
C3	33.4	+/-0.2	Internal width of rail system at guide features	
D3	34.0	+0.3 / -0	Internal width of rail system at location features	
E3	0.5	+/-0.01	Material thickness of body of rail system	
F3	76.0	+/-0.2	Datum L to beginning of EMI shield to accommodate transceiver rear shoulder	
G3	20.0	+/-0.15	Pitch of location features	
Н3	9.6	+/-0.15	Datum L to centre of first location feature	
J3	13.0	+/-0.15	Pitch of guide features	
K3	1.1	+/-0.1	Datum L to first guide feature	
L3	2.25	+/-0.2	Datum L to first solder pin	
М3	12.5	+/-0.2	Datum L to second solder pin	
N3	20.5	+/-0.2	Datum L to third solder pin	
P3	38.1	+/-0.2	Datum L to fourth solder pin	
Q3	55.7	+/-0.2	Datum L to fifth solder pin	
R3	73.4	+/-0.2	Datum L to sixth solder pin	
S3	81.4	+/-0.2	Datum L to seventh solder pin	
T3	90.5	+/-0.2	Datum L to eighth solder pin	
U3	34.4	REF	Internal width of rail system at EMI shield	
V3	35.5	+0 / -0.2	Distance between centres of inner solder pins, 'X' Axis	
W3	42.0	+0 / -0.2	Distance between centres of outer solder pins, 'X' Axis	
Х3	0.5 Max	+0 / -0.05	Height and length of chamfer at base of hard stop	
Y3	3.0	+/-0.05	Datum E to base of hard stop	
Z 3	4.35	+/-0.1	Datum E to top of hard stop	
AA3	1.7	+/-0.1	Datum E to base of location features	
BB3	3.4	+/-0.1	Datum E to top of location features	
CC3	5.2	+/-0.1	Datum E to top of guide features	
DD3	0.2	+/01	Material thickness of EMI shield	
EE3	3.0	+/-0.2	Width of board stand-off at solder pins	
FF3	0.5	+/-0.05	Width of first mate solder pins	
GG3	0.75	+0 / -0.1	Width of second mate solder pins	
НН3	2.25	+/- 0.1	Height of second mate solder pins	
JJ3	0.5	+/- 0.2	Height of board stand-off at solder pins	
KK3	3.25	+/-0.1	Height of first mate solder pins	
LL3	45.0	+/-0.2	Overall width of rail system	
ММЗ	4.0	+/-0.1	Width of guide features	
NN3	5.7	+/- 0.1	Local vertical height of hard stop to module	
PP3	5.55	+/- 0.1	Local vertical height of hard stop to module	

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE No changes are allowed to this document

A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 51 of 56

ALCATEL

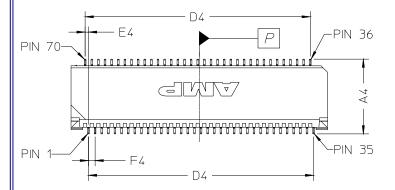
QQ3	4.8	+/-0.1	Local vertical height of hard stop to module
RR3	0.5	+/- 0.1	Flat section of strengthening feature
RSS3	0.5	+/- 0.1	Radius of strengthening feature
TT3	0.25	MAX	Max allowable protrusion for strengthening feature
UU3	0.6	+/- 0.1	Horizontal position for center of radius of formed feature
RVV3	1.0	+/- 0.1	Radius of formed rail feature
WW3	2.8	+/- 0.1	Vertical position of formed rail feature
XX3	62.1	+/- 0.15	Position of location feature

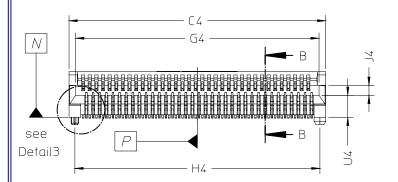
Table 29 - Definition of Rail System Dimensions

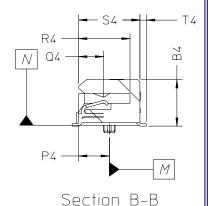
REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 52 of 56







12.6 CONNECTOR DESCRIPTION

Customer connector is the TycoAMP 70 position Right angle Connector Assembly (0.8mm pitch), part number 1367337-1 (or similar).

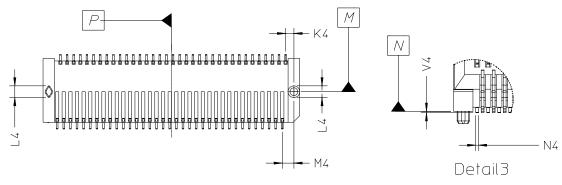
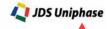


Table 30 - 70-way Electrical Connector Layout

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE No changes are allowed to this document


A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 53 of 56

KEY	VALUE (mm)	TOLERANCE (mm)	COMMENTS
A4	9.2	Max	Connector length
B4	5.9	Max	Connector height
C4	31.2	Max	Connector width
D4	27.2	Ref.	Contact array width
E4	0.4	Тур.	Offset of second row of contacts from first
F4	0.8	Тур.	Pitch of contacts
G4	29.4	+/-0.08	Connector card slot width
H4	29.6	TP	Distance between guide pins
J4	1.35	Max	Connector Card Slot Height
K4	1.0		Round guide pin to PIN 35
L4	1.4		Width of guide pins
M4	1.4		Round guide pin to PIN 36
N4	0.2		Width of contacts
P4	3.7		Datum M to mouth of connector card slot
Q4	3.0	Max	Depth of contact point from mouth of connector card slot
R4	6.0	Min	Depth of card slot from mouth of connector card slot
S4	7.4		Back of connector from mouth of connector card slot
T4	0.8		Length of solder leads past housing, front and rear
U4	2.6	Min	Datum N to bottom of card slot
V4	0.1	+0.1-0.13	Datum N to bottom of contacts

Table 31 - 70-way Electrical Connector Dimensions

DATUM	DESCRIPTION		
М	Centre vertical plane of guide pins		
N	Bottom of connector stand off surfaces		
Р	Centre vertical plane of connector		

Table 32 - 70-way Electrical Connector Datums

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 54 of 56

13 ENVIRONMENTAL CONDITIONS

Environmental Conditions are a mandatory requirement.

13.1 THERMAL REQUIREMENTS

This section sets the boundary conditions for thermal dissipation and cooling, to ensure interoperability of transceivers from different suppliers.

13.2 COOLING

A single transceiver should be capable of normal operation under the following worst-case conditions:

55°C maximum ambient air temperature

1.0 metre/second minimum air flow

Possible directions of airflow are as shown in the Figure below.

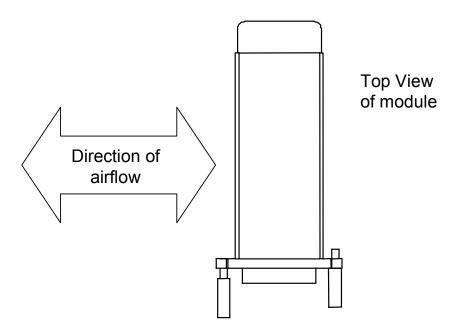


Figure 13 - Airflow Direction

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE
No changes are allowed to this document
A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 55 of 56

14 PIN ASSIGNMENT

Top Row			Bottom R	low	
Mating sequence	Pin	Description	Description	Pin	Mating Sequence
1	70	Gnd (Tx)	Vcc (TEC)	1	2
1	69	Gnd (Tx)	Vcc (TEC)	2	2
3	68	TxClk (-ve)	Vcc (TEC)	3	2
3	67	TxClk (+ve)	Gnd (TEC)	4	1
1	66	Gnd (Tx)	Gnd (TEC)	5	1
3	65	Reserved	Gnd (TEC)	6	1
3	64	Reserved	Vcc (Tx)	7	2
1	63	Gnd (Tx)	Vcc (Tx)	8	2
3	62	Reserved	Gnd (Digital)	9	1
3	61	Reserved	SDA	10	3
1	60	Gnd (Tx)	SCL	11	3
3		Reserved	Module Enable	12	3
3	58	Reserved	Vcc (Digital)	13	2
1	57	Gnd (Tx)	Gnd (Digital)	14	1
3		Tx Data (-ve)	Tx Disable	15	3
3	55	Tx Data (+ve)	Tx Alarm	16	3
1	54	Gnd (Tx)	Tone Input	17	3
1	53	Gnd (Tx)	Tone Output	18	3
1	52	Gnd (Rx)	Rx Alarm	19	3
3	51	Reserved	Rx LOS	20	3
3	50	Reserved	SLA-AD2	21	3
1	49	Gnd (Rx)	SLA-AD1	22	3
3	48	Reserved	SLA-AD0	23	3
3	47	Reserved	Vendor Reserved	24	3
1	46	Gnd (Rx)	Vendor Reserved	25	3
3	45	Reserved	Vendor Reserved	26	3
3	44	Reserved	Vendor Reserved	27	3
1	43	Gnd (Rx)	Vendor Reserved	28	3
3	42	Rx Data (-ve)	Module Sense	29	3
3	41	Rx Data (+ve)	Vcc (Rx)	30	2
1	40	Gnd (Rx)	Vcc (Rx)	31	2
3	39	Rx Clk (-ve)	Vcc (Rx Bias)	32	2
3	38	Rx Clk (+ve)	Gnd (Rx Bias)	33	1
1	37	Gnd (Rx)	Gnd (Rx Bias)	34	1
1	36	Gnd (Rx)	Gnd (Rx)	35	1

Notes:-

- 1) "Reserved" Pins are reserved by the MSA for future function. These are " No user Connect" (ie. should not be connected to ground)
- (ie. should not be connected to ground)
 2) "Vendor Reserved" Pins are reserved vendor specific function. For connection, refer to vendor datasheet.
- 3) All ground connections should have the same potential

Module Status Outputs	Management Input/Output
Module Control Inputs	Positive Supply Voltage
Clock/Data Input/Output	Negative Supply Voltage
Vendor Specific Functions	Reserved Functionality (MSA)

REFERENCE DOCUMENT FOR DWDM PLUGGABLE TRANSCEIVER MODULE

No changes are allowed to this document A printed version of this document is an uncontrolled copy

Public Document Release 3

Page 56 of 56