T HEWLETT

§ PACKARD

Yalustronics Internaticnal, Ine.

1-800-552-8258
MASTER COPY

Manual Part No. 35680-90025
Microfiche Part No. 35660-90225

® Copyright Hewlett-Packard Compary 1988
8600 Soper Hill Road
Everett, Washington 98205-1298 LJ.S.A,

Printed: July 1988

HEWLETT

48 PACKARD
NOTICE
The information contained in this document is subject to change without notice.

HEWLETTPACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MANUAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard
shall not be liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of

this material.

WARRANTY

A copy of the specific warranty terms applicable to your Hewleti-Packard product and
replacement parts can be obtained from your local Sales and Service Office.

This document contains proprietary information which is protected by copyright.

All rights are reserved. No part of this document may be photocopied, reproduced or
translated to another language without the prior written consent of Hewlett-Packard
Company. This information contained in this document is subject to change

without notice.

Use of this manual and flexible dise(s) or tape cartridge(s) supplied for this pack is restricted

to this product only. Additional cop1es of the programs can be made for security and back-up
purposes only. P

© Copyright 1987, 1988 Hewlett-Packard Company.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subdivision (¢) (1) (ii) of the Rights in Technical Data and Computer Software clause
at 52.227-7013.
HEWLETT-PACKARD COMPANY
3000 Hanover St.

Palo Alto, CA 94303

Table of Contents

Introductionte HP-IB 1-1
Notice to Experienced HP-IB Programmers -1
ManualOverviewcovvn. 1-2
HP-BOverviewo i 1-3
Sending Commands Overthe HF-B 1-4
The IEEE 488.1 and 488.2 Standards 1-4
HP-BSBIUD ... o 1-5

Configuring the HP-IB System 1-5
Quick Verification, 1-8
VerificationProgram 1-10

Behavior in an HP-IB System 241
HP.IB Interface Capabilties 2-1
Controller Capabilities 22
Bus Management Commands vs,

DeviceCommandsc.o.... 2-2
Response to Bus Management Commands . ., .. 23
DeviceClear (DCL) 2-3
GoTolocal (GTL)Y it 2-3
Group Execute Trigger (GET) 2-3
Interface Clear IFC) ot 2-3
bocal Lockout (LLO) ool 2-4
Parallel Poll 2-4
Remote Enable (REN) 2.4
Selacted Davice Clear (SDC) 24
SerialPall 25
Take Control Tatker (TCT) 2-5
MessageExchange 2-6
BuffersandQueues 26
CommandParsercocvivnin... 2.7
Query Rasponse Generation 2-8
Synchronization o 2-9
Qvertapped Commandsooven.. 2.9
Delayed Result Commands 2-11
Passing Control 2-i2

Programming with

Hiararchical Commands 3-1
infroduction L e 3-1
TheCommand Tres ooy 3.2
Sending Multiple Commands 3-3
Command Abbreviation 3-4
Message SymtaxX i 3-5

Conventions i 35
CommonDefinitions 3.5
Special SyntacticElements 3-5
ProgramMessage Syntax 3-6
Response Message Syntax 3-10

TransferringData 4-1

DataEncoding i e 4.1
ASCHEncoding 4-1
BinaryEncoding oo i 4-2

DataFormats, 4-5
Conventions 0. i 4-5
CommonDefinitions 4-5
DecimalNumericData 4-5
CharacterData 4.7
StringData i, 4-7
ExpressionData 4.8
BlockData 4-8

FleFormats 410
BasicFileStructures 4-10
Special FigldsinaRecord 4-12
The Orderof Records inaFile 4-13
ExampieFile o oo, 4-14
Controller AccesstoFiles 415
Record Descriptions 4-16

Using the HP 35660A's
Status Registers 51

Introduction 5-1

Table of Contents {continued)

Typesof RegistersinaSet................... 54
Information Flow in a Register Set 5-4
Special Cases i i 5-5

The HP 35660A's RegisterSets 5-6
Status Byte RegisterSet 5-8
Event Status RegisterSet 5-10
Device Status RegisterSet 5-13
Data Integrity RegisterSet 5-16
User Status RegisterSet 5-18

Programming Examples 6-1

Introduction, ... e 6-1

Command Reference 7-1

Introduction 71
Conventions ovviinn.. 7-2
Common Definitions 7-2

CommonCommands 7-3
MOALT query 7-3
LS command 74
MESE?] o command/query 7-5
EORY query 76
DN query 77
*PC[? command/cuery 7-8
TOPT? query 79
POB e command 7-10
i 2210 I command/query 7-11
RET command 7-12
*SRE? ... command/query 7-13
*IB? . query 7-14
TRG L. command 7-15
ST? o query 7-15
WAL L command 7-18

Device-SpecificCommands 717
ARM oo subsystem 7-17
AVERage subsystem 7-19
CAlibration subsystem 7-27
CONFigure subsystem 7-31
DISPlay subsystem 7-33
FREQuency subsystem 7-65
GPIB subsystem 7-73
INITaalize subsystem 775
INPUt ... subsystem 7-77
LIMit .. subsystem 7-85

MARKer, subsystem 7-91
MMEMory subsystem 7-131
PLOTterc.vt, subsystem 7-163
PRINter subsystem 7-173
SCResnc.0t subsystem 7-175
SERVice subsystern 7-181
SOURce subsystem 7-183
STATUSvvnnn, subsystemn 7-187
SWEep..................... subsystem 7-203
8YSTemcovvvie subsystem 7-205
TEST o subsystem 7-221
TRACEt subsystem 7-223
TRIGger subsystem 7-245
USER oo subsystem 7-251
WINDow subsystem 7-257
SelectingUnlts A-1

Cross-Reference from Front-Panel Keye

toHP-IBCommands B-1
Infroduction i i B-1
Measurement Group B-2

AVBTAgE e e B-2
Fraquancy, B-2
nput ... e B-2
MeasTypeo i il B-3
Pause/Cont ccviiinn. 8-3
T B o 8-3
Start ... e B-3
B 4T T T B-3
Window B-4
Display Group.cvv e e B-5
ActiveTrace, B-5
Format e B-5
Math ... e B-5
MeasData B-6
TraceType B-7
SCal .. e e B-7
Marker Group i e B-8
Marker s B-8
MarkerFetn e B-8
SystemGroup e B-11
Melp .. B-1t1
Local/HP-IB i B-11
PlotPrird ... B-11

Tabile of Contents {continued}

Praset B-13 Command EIMMOS it D2
SaVE ... e B-13 AO0CMDERR ... D2
SpetFatn .. B-16 SIOHINVALIDCHAR oL -2
Recall B-19 SIGBADCMD L D2
UserDefinge oo, B.21 20 BADPARM Lo D-3
Numeric Entry Group B-22 23 OVERFLOW . D-3
Marker Value ... B-22 28 PARMMISSING o D-3
-142 TOC MANYPARMS D-3
HP-IB Commandlist 0. ... C-1 EXoCUtlON ErrOmso D-4
OO EXECUTEERRORt -4
Common Commands ..o ct 203 TRIGGERERROR D-4
Device-Specific Commands C-2 211 SETTINGS CONFLICT D-5
ARM . e -2 2120UTOF RANGE e D-6
AVERAGE -2 L2220UTOFMEMORY D&
CALIbration o i C-2 240 MASS STORAGEERROR D-7
CONFIgure ... c-2 241 HARDWARE MISSING D-7
DISPlayLALBITI2] oo C-3 242NOMEDIAcviviiiiniin, D-7
FREQUENCY ...t C-4 2ABADMEDIA D-8
GPIB .. C-4 244MEDIAFULL ... D-§
INfTialize i C-4 ASDIRFULL .. D-8
INPUELTI2] oo (o -246 FILE NAME NOTFOUND D-8
LIMEET-BY i C-5 247 DUPLICATENAME -8
MARKerfA[BItI2] oo C-6 248 MEDIAPROTECTED D-8
MMEMOrY ... C8 Internal Errors i D-g
R |11 S0NTERNALERROR 09
SCREBN ...t iii e c9 502 SYSTEM ERROR ... D¢
SERVICE oo C-10 SBO3TIMEOQUTERROR D-g
SOURCe ..o C-10 SIOMEMORYERROR D-9
STATUS ..ottt C-11 FIFCALDATALOSS ...oovvvvniinnn b5
SWESD © oo C11 SBIOSELFTESTERROR D@
SYSTEM vt C-12 350 TOO MANY ERRORS ... o-s
TEST C43 QUBRY EIOIS .. . i i e B-10
TRACE[A[BITIZ] ..o i, C-14 400 QUERYERRORc0vunn... D-10
TRiIGger T C-15 10 INTERRUPTED D-10
USER ... C-15 420 UNTERMINATED 0-10
WINDOW[T]2] ot C-15 422 ADDRTALKNO QUTPUT D-10
“430DEADLOCK, ... oo D-10
ErrorMessages, D-1
IrOdUCON . ..o pq index
Sales & Suppont Offices

Chapter 1
Iintroduction to HP-IB

Notice to Experienced HP-IB Programmers

Two things that have been true about HP-IB programming for many past instruments are
not true for HP-IB programming of the HP 35660A.

In past instruments, a command typically consisted of a single mnemonic. An HP 35660A
command typically consists of a series of mnemonics that are selected from a command
hierarchy. The hierarchy organizes commands into groups that access related analyzer
functions. These multi-mnemonic commands are less eryptic than single-mnemonic
commands and help to make your programs more self-documenting. Chapter 3, deseribes
the command hierarchy.

It has also been typical for past instruments to have an HP-IB command for each front-
panel hardkey and softkey. This is not true for the HP 35660A. The analyzer does give you
HP-1B access to all front-panel functions, but there is not a one-to-one correspondence
between commands and keys. This results from the fact that the HP-IB command hierarchy
is organized differently than the front-panel key hierarchy. Appendix B provides a
cross-reference for selecting an HP-IB command that is equivalent to a series of front-panel
key presses. A special front-panel feature called Mnemonic Echo also provides
cross-referencing. Mnemonic Echo is described in Appendix B.

1-1

intreduction to HP-IB

Manuail Qverview

This manual is organized into five major parts:

1.2

1. Programming Fundamentals — This part of the manual contains five chapters,

each of which discusses some aspect of programming the HP 35660A via
the HP-IB:

@

Chapter 1 introduces you to HP-IB concepts and tells you how to configure
the HP 35660A in an HP-IB system.

Chapter 2 explains how the analyzer interacts with the controller and
other devices on the HP-IB.

Chapter 3 explains the HP 35660A’s command hierarchy.

Chapter 4 explains how data is transferred between the analyzer and
a controller. It also describes the structure of files you can save from
the analyzer.

Chapter 5 describes the analyzer’s register structure and tells you how the
analyzer uses registers to generate service requests.

. Programming Examples — This part (Chapter 6) contains commented

programming examples.

Command Reference — This part (Chapter 7) contains a detailed description of
each HP-IB command. The command descriptions are organized alphabetically.

L]

@

. Appendices — This part of the manual contains four appendices:

Appendix A explains how to select the vertical units you can send with
certain commands.

Appendix B cross-references front-panel keys to equivalent
HP-IB commands.

Appendix C lists all of the HP-IB commands in alphabetical order.

Appendix D lists the analyzer’s error messages.

Index — This part of the manual references the page numbers where different
subjects are discussed. It can be especially useful for determining which
command you should use to access a particular analyzer function.

Introduction 1o HP-1B

HP-IB Overview

HP-1B, the Hewlett-Packard Interface Bus, is a high performance bus that allows you to
build integrated test systems from individual instruments and computers. The bus and its
associated interface operations are defined by the IEEE 488.1 standard.

HP-TB cables provide the physical link between devices on the bus. There are eight data
lines on each cable that are used to send data from one device to another. Devices that can
be addressed to send data over these lines are called ““talkers,” and those that can be
addressed to receive data are called “listeners.” There are also five control lines on each
cable that are used to manage traffic on the data lines and to control other interface
operations. Devices that can use these control lines to specify the talker and listener in a
data exchange are called “controllers.”

When an HP-IB system contains more than one device with controller capabilities, only

one of the devices is allowed to control data exchanges at any given time. The device
currently controlling data exchanges is called the “active controller.” Also, only one of

the controller-capable devices can be designated as the “system controller.” The system
controller is the one device that can take contro] of the bus even if it is not the active
controller. The HP 35660A can act as a talker, listener, active controller, or system controller
at different times,

HP-IB addresses provide a way to identify devices on the bus. For example, the active
controller uses HP-IB addresses to specify which device talks and which device listens during
a data exchange. This means that each device’s address must be unique. You set a device’s
address on the device itself, usually using a rear-panel switch or a front-panel key sequence.

introduction to HP-IB

Sending Commands Over the HP-IB

Commands are sent over the HP-IB via a controller’s language system, such as BASIC or
Pascal. As aresult, you will need to determine which keywords your controller’s language
system uses to send HP-IB commands. When looking for keywords, keep in mind that there
are actually two different kinds of HP-IB commands:

¢ Bus management commands, which control the HP-IB interface

» Device commands, which control analyzer functions

Language systems usually deal differently with these two kinds of HP-IB commands. For
example, HP BASIC 5.0 uses a unique keyword to send each bus management command, but
always uses the keyword OUTPUT to send device commands. For more information on the
differences between bus management commands and device commands, see Chapter 2,
““Behavior in an HP-IB System.”

The following example shows how to send a typical device command:
CUTPUT 711,"AVERAGE. COUNT 5"

This sends the command within the quotes (AVERAGE:COUNT 5) to the HP-IB device at
address 711. If the device is an HP 356604, the command instructs the analyzer to set the
number of averages tc 5.

NOTE All examples in this manual are written for HP BASIC 5.0 running on an
HP Sertes 200 computer,

The |IEEE 488.1 and 488.2 Standards

The HP 35660A conforms to both the IEEE 488.1 standard and the IEEE 488.2 standard.
‘The IEEE 488.1 standard defines the mechanical, electrical, and functional aspects of the
original 488 bus. The IEEE 488.2 standard defines data encoding, data formats, bus

communication protocols, and a set of commonly needed commands for instruments that use
the 488 bus.

1.4

Introduction to HP-IB

HP-IB Setup

This section contains a procedure for configuring the HP 35660A and an external controller
in a simple HP-IB system. Although an HP Series 200 computer is the controller used in the
system, other computers that support an HP-IB interface can also be used. If you are using
one of those other computers, the configuration procedure can only be used as a general
guide. You should consult your computer’s documentation for more complete information.

This section also contains a procedure for verifying that commands can be sent over the
HP-IB. HP BASIC is used for the verification procedure’s test program. If your computer
usges some other language, the keywords and syntax for the test program may be different.
If this is the case, you will need to write a similar program using your language’s keywords
and syntax.

Configuring the HP-IB System

Equipment and Software

HP 35660A Dynamic Signal Analyzer
HP 9836 computer

HP 10833A, B, C, or D HP-IB Cable
HP BASIC 5.0

Procedure

1. Turn off the HP 35660A and the HP 9836, then connect them with the HP-IB
cable as shown in Figure 1-1.

Figure 1-1, HP-IB Connections

Introduction to HP-IB

2. Turn on the HP 9836. If necessary, load HP BASIC 5.0 following the
instructions in the computer’s operating manual. Note that the following
language extensions must be installed for the verification program to work:

¢ CRTA
« HPIB
¢ IO

e EDIT

Programs that are more complex than the verification program will probably
require more language extensions.

3. Turn on the HP 35660A. When the softkey labels appear, press the
Local/HP-IB hardkey. (see Figure 1-2)

Softkeys

—— Softkey Labels\

¥l Local/HP-IB
Hardkey -

Power Switch

T

Figure 1-2. HP 35660A Front Panel

4. Verify that the analyzer’s address is set to 11. The current address setting is
displayed in the HpibAddr field (see Figure 1-3). You can change the analyzer’s
address by pressing the ANALYZER ADDRESS softkey, then using the numeric
keypad and the ENTER softkey to enter a new value. However, the
instructions in the verification procedure assume that the analyzer address is
set to 11.

Introduction 1o HP-IB

Plotflade: 3 PentAddr: § i%??é
Discunit: & Brscvel: @ " ;
5 i RES T
I marksr ®: 51,2 kHz Y -129 847 dBUrms ICONTRAOLLR
Analyzer's Current -51 ' : : ‘ N ‘
GRS VEBERES BT
HP-IB Address ™77 b b L OHLY
EB - : : :
JE i : : PERIPHERYL
FLI . HENS el ABDRESSES
; : Hp-1H
et UTILITIES

My

Siart: O Hz
Spectrum Chan)

:};

Step Iaz.d W V9ER 5RO

Figure 1-3. HP 35660A Screen Afier Pressing Local/HP-IB

5. Verify that the analyzer is set to the addressable-only mode. The softkey labels
that appear when you press the Local/HP-IB hardkey include SYSTEM
CONTROLLR and ADDRESSBL ONLY. Only one of these two softkeys can be
selected at a time, and the one that is selected will have a box around it. If
ADDRESSBL ONLY is not selected, then press that softkey.

NOTE in any HP-IB system there can be more than one device with controller capabilities.

But at any given time, only one device on the bus can be designated as the
system coniroller.

Introduction o HP-B

Quick Verification

Having just completed all the steps in the preceding section, you are ready to verify that
commands can be sent over the HP-IB. In this quick verification, you are going to enter an
HP BASIC keyword that should place the HP 35660A under remote control.

Procedure

1. Press the Local/HP-IB hardkey, then the HP-IB UTILITIES softkey. Another set
of softkey labels is displayed. In the first label, STATUS ON/OFF, OFF should
be highlighted.

2. Press the STATUS ON/OFF softkey so that ON is highlighted. This will display
the four HP-IB status indicators: Rmt, Tlk, Lin, and Srq. (see Figure 1-4)

HP{B Siatus indicators

HOTHRYUF: 19 PlotRdde: 5 PratRder: L &%EE
Dischddr: 2 Diselniz: 2 DiszWal: B
EREE RN i
EREE HAN, N T §
gl Marker % S1.2 xhz ¥. 127,375 dBVras LIV 5k |
-55 i [;] N ; ;
' | i i : H i ; ; MHERMOH T
dBVrms) : : ‘ : : . | ECHS
KRB
3 e G b sbRALL
Eﬂ?el
o
Jdiy

AT

pad

Figure 1-4. HP 35660A Screen with HP-IB Status Indicators

3. Type the following on the computer:
REMOTE 711

Then press the computer’s ENTER key. Now the HP 35660A’s Rmt and Litn
indicators should both be highlighted. This tells you that the analyzer is under
remote control of the computer. To return the analyzer to front-panel control,
press the Local/HP-IB hardkey or enter the following on the computer:

LOCAL 711

1-8

Introduction to HP-iB

Troubleshooting
If the Rmt indicator doesn’t perform as expected, check the following things:

¢ Be sure that your HP-IB cable connections are secure and that the cable is fiee
of defects.

» Verify that the analyzer is in addressable-only mode and that its address is set
to 11.

¢ Be sure you are using the required equipment and software.

* Be sure you have loaded all the required language extensiong into the computer.
(For a list of loaded extensions, enter the following into the computer: LIST BIN)

If everything seems to be in order, but the Rmt indicator still doesn’t perform as expected,
contact your local HP Sales/Service office.

-9

introduction to MP-B

Verification Program

The quick verification procedure confirmed that the computer could talk to the analyzer.
However, you must write a short program to confirm that the analyzer can talk to the
computer. If you enter the program correctly, the computer displays the following statement
when you run the program:

ACTUAL FREQUENCY SPAN IS: 25600 HZ

NOTE The foliowing procedure assumes that you have completed all the steps in
“Configuring the HP-IB System” using all the required equipment and software.

Procedure
1. Enter the following program:

10 PRINTERIS 1

20 Dsa=711

30 ABORT7

40 CLEAR Dsa

50 QUTPUT Dsa;"*RST*

60 OUTPUT Dsa;"FREQ:SPAN 20KHZ"

70 QUTPUT Dsa;*FREQ:SPANT®

80 ENTER DsaA

80 PRINT "ACTUAL FREQUENCY SPAN |S8:*:A"HZ"
100 END

See your computer and software documentation if you need help entering
the program.

2. Press the computer’s RUN key. The program tells the analyzer to preset.

It then tells the analyzer to select the nearest frequency span that is greater
than or equal to 20 kHz. Finally, the program asks the analyzer to return
the selected frequency span and has the computer display the returned value
as follows:

ACTUAL FREQUENCY SPAN IS: 25600 HZ

Troubleshooting

1f the program doesn’t run correctly, be sure you have entered the program exactly as listed.
Then refer to “Quick Verification” for additional troubleshooting hints.

Chapter 2
Behavior in an HP-IB System

HP-IB Interface Capabilities

The HP 35660A has the following interface capabilities, as defined by the
IEEE 488.1 standard:

SH1
AH1
T6

TEO
L4

LEO
SR1
RL1
PPO
DC1
DT1

complete Source handshake capability

complete Acceptor handshake capability

basic Talker, Serial Poll, no Talk Only, unaddress if MLA
no Extended Talker capability

basic Listener, no Listen Only, unaddress if MTA
no Extended Listener capability

complete Service Request capability

complete Remote/Local capability

no Parallel Poll capability

complete Device Clear capability

complete Device Trigger capability

System Controller capability

send IFC and take charge Controller capability
send REN Controller capability

send IF messages, receive control, pass control
three-state drivers

241

Behavior in an HP-IB System

Controller Capabilities

The HP 35660A can either be configured as an HP-IB system controller or as an
addressable-only HP-IB device. This is done by selecting either the SYSTEM CONTROLLR
or ADDRESSBL ONLY softkey on the analyzer’s front panel. (These keys are presented
when you press the Local/HP-IB hardkey.)

Normally, the HP 35660A is not configured as the system controller unless it is the only
controller on the bus, Such a setup would be likely if you just wanted to control printers,
plotters, or external disc drives with the analyzer. It might also be the case if you were using
HP Instrument BASIC (HP 35680A) to control other test equipment.

When the analyzer is being used with another controller on the bus, it is normally configured

as an addressable-only HP-IB device. In this configuration, the analyzer can function as the
active controller (when it is passed control), or as a talker or listener.

Bus Management Commands vs. Device Commands

The HP-IB contains an attention (ATN) line that determines when the interface is in
the command mode or the data mode. When the interface is in the command mode
(ATN TRUE), a controller can send bus management commands over the bus. Bus
management commands are used to:

» Specify which devices on the interface can talk (send data) and which can listen
(receive data)

* Instruct devices on the bus, either individually or collectively, to perform a
particular interface operation

The analyzer’s responses to bus management commands are described in the next section.

When the interface is in the data mode, device commands and data can be sent over the bus.
Device commands are sent by the controller, but data can be sent either by the controller or a
talker. The HP 35660A responds to two different kinds of device commands:

¢ Common commands, which access device functions required by the
[EEE 488.2 standard.

¢ Device-specific commands, which access the bulk of the analyzer’s functions.

The analyzer’s responses to device commands are described in Chapter 7
“Command Reference.”

2-2

Bahavior ir an HP-IB System

Response to Bus Management Commands

This section tells you how the HP 35660A responds to the HP-IB bus management
cormmands. The commands themselves are defined by the IEEE 488.1 standard. Refer to
the documentation for your controller’s language system to determine how to send

these commands.

Device Clear (DCL)

This command causes the analyzer to:

s Clear its input buffer and output queue
¢ Reset its command parser so it is ready to receive a new program message

e Cancel any pending *OPC command or query
The command does not affect:

* Front-panel operation
+ Any analyzer operations in progress (other than those already mentioned)

* Any of the analyzer’s settings or registers (although clearing the output queue
may indirectly affect the Status Byte's MAV bit)

Go To Local (GTL)

This command returns the analyzer to local (front-panel) control. All keys on the analyzer’s
front-panel are enabled.

Group Execute Trigger (GET)

This command triggers the analyzer {causes it to start collecting a time record) if the
following two things are true:

* The trigger source must be the HP-IB (TRIG:SOUR BUS).

* The analyzer must be ready to trigger. (Bit 2 of the Device Status condition
register must be set.)

GET has the same effect as the *TRG and TRIG:IMM program messages.

Interface Clear (IFC)

This command causes the analyzer to halt all bus activity. It discontinues any input or
output, although the input buffer and output-queue are not cleared. If the analyzer is
designated as the active controller when this command is received, it relinquishes control of
the bus to the system controller, If the analyzer is enabled to respond to a Serial Poll it
becomes Serial Poll disabled.

2-3

Behavior in an HP-IB System

Local Lockout (LLO)

This command causes the analyzer to enter the local lockout mode, regardless of whether it
is in the local or remote mode. The analyzer only leaves the local lockout mode when the
HP-IB’s Remote Enable {REN) line is set FALSE.

Local lockout ensures that the analyzer’s Local/HP-IB key is disabled when the analyzer is in
the remote mode. When the key is enabled, it allows a front-panel operator to return the
analyzer to local mode, thus enabling all other front-panel keys. However, when the key is
digabled, it does not allow the operator to return the analyzer to local mode.

Parailel Poll
The HP 35660A ignores all of the following parallel poll commands:

e Parallel Poll Configure (PPC)

e Parallel Poll Unconfigure (PPU)
» Parallel Poll Enable (PPE)

¢ Parallel Poll Disable (PFD})

Remote Enable (REN)

REN is a single line on the HP-IB. When it is set TRUE, the analyzer will enter the remote
made when addressed to listen. It will remain in remote mode until it receives the Go to
Local (GTL) command or until the REN line is set FALSE.

When the analyzer is in remote mode and local lockout mode, all front-panel keys are

disabled. When the analyzer is in remote mode but not in local lockout mode, all front-panel
keys are disabled except for the Local/HHP-IB key. See Loeal Lockout for more information.

Selected Device Clear (SDC)

The analyzer responds to this command in the same way that it responds to the Device Clear
command. See the latter for details.

2-4

Behavior in an HP-IB System

Serial Poll

The analyzer responds to both of the serial poll commands. The Serial Poll Enable (SPE)
command causes the analyzer to enter the serial poll mode. While the analyzer is in this
mode, it sends the contents of its Status Byte register to the controller when addressed
to talk.

When the Status Byte is returned in response to a serial poll, bit 6 acts as the Request
Service (RQS) bit. If the bit is set, it will be cleared after the Status Byte is returned.

The Serial Poll Disable (SPD) command causes the analyzer to leave the serial poll mode.

Take Control Talker {(TCT)

If the analyzer is addressed to talk, this command causes it to take control of the HP-IB.

It becomes the active controller on the bus. The analyzer automatically passes control back
when it completes the operation that required it to take control. Control is passed back to
the address specified by the *PCB program message (which should be sent prior to

passing control).

If the analyzer does not require control when this command is received, it immediately
passes control back.

Behavior in an HP-iB System

Message Exchange

The analyzer communicates with the controller and other devices on the HP-IB via program
messages and response messages. Program messages are used to send commands, queries,
and data to the analyzer. Response messages are used to return data from the analyzer.
The syntax for both kinds of messages is discussed in Chapter 3.

There are two important things to remember about the message exchanges between the
analyzer and other devices on the bus:

¢ The analyzer only talks after it receives a terminated query. (Query termination
is discussed in “Query Response Generation,” later in this chapter.

¢ Once it receives a terminated query, the analyzer expects to talk before it is told
to do something else. '

Buffers and Queues

Buffers and queues enhance the exchange of messages between the HP 35660A and other
devices on the bus. The analyzer contains:

s An input buffer
¢ An error queue

e An output queue

Input Buffer

The input buffer temporarily stores all of the following until they are read by the analyzer’s
command parser:

¢ Device commands and queries
¢ Group Execute Trigger (a bus management command)
¢ The HP-IB END message (EOI asserted while the last data byte is on the bus)

The input buffer makes it possible for a controller to send multiple program messages to the
analyzer without regard to the amount of time required to parse and execute those messages.
The buffer holds up to 256 bytes. It is cleared when you do one of the following:

¢ Turn the analyzer on
¢ Send Device Clear (DCL) or Selected Device Clear (SDC)
« Press the Local/HP-IB hardkey

28

Behavior in an HP-IB System

Error Queue

The error queue temporarily stores up to ten error messages. Each time the analyzer detects
an error, it places a message in the queue. When you send the SYST:ERR query, one message
is moved from the error queue to the output queue so it can be read by the controller. Error
messages are delivered o the output queue in the order they were received. The error queue
is cleared when you do one of the following:

o Turn the analyzer on

o Send the *CLS command

Output Queue

The output queue temporarily stores a single response message until it is read by a
controller. The analyzer’s output queue holds up to 8192 bytes. It is cleared when you do
one of the following:

¢ Turn the analyzer on
¢ Send Device Clear (DCL) or Selected Device Clear (SDC)
¢ Press the Local/HP-IB hardkey

Command Parser

The command parser reads program messages from the input buffer in the order they were
received from the bus. It analyzes the syntactic elements of the messages to determine what
actions the analyzer should take.

One of the parser’s most important functions is to determine a program message’s position
in the analyzer’s command tree. (For more information on the command tree, see
Chapter 3.) When the command parser is reset, the next syntactic element it receives is
expected to arise from the base of the analyzer’s command tree. The parser is reset

when you do one of the following:

¢ Turn the analyzer on
» Send Device Clear (DCL) or Selected Device Clear (SDC)
* Press the Local/HP-IB hardkey

e Follow a semicolon with a colon in a program message (For more information,
see “Sending Multiple Commands’” in Chapter 3.)

2-7

Behavior in an HP-IB System

Guery Response Generation

When the HP 35660A parses a query, the response to that query is placed in the analyzer’s
output queue. You should read a query response immediately after sending the query. This
ensures that the response will not be cleared before it is read. The response will be cleared
before you read it if any of the following message exchange conditions occur:

e Unterminated condition — This condition results when you neglect to properly
terminate the query (with an ASCII line feed character or the HP-1B END
message) before you read the response.

¢ Interrupted condition — This condition results when you send a second program
message before reading the response to the first.

¢ Buffer deadlock — This condition results when you send a program message that:
a. Is longer than the input buffer and
b. Generates more response data than will fit in the output queue.

28

Behavior in an HP-IB System

Synchronization

This section describes tools you can use to synchronize the analyzer and a controller. Proper
use of these tools ensures that the analyzer will be in a known state when you send a
particular command or query.

Overlapped Commands

Device commands can be divided into two broad classes:

¢ Sequential commands

s Overlapped commands

Most device commands that you send to the analyzer are processed sequentially. A
sequential command holds off the processing of any subsequent command until it has been
completely processed. However, some commands do not hold off the processing of
subsequent commands; they are referred to as overlapped commands.

Typically, overlapped commands take longer to process than sequential commands. For
example, the INIT:STAT STAR command is used to start a measurement. The command is
not considered to have been completely processed until the measurement is complete. This
can take a very long time if the measurement is averaging a large number of time records.

NOTE INIT:STAT 8TAR and INIT:STAT RUN are considered to be pending overapped
commands whenever bit 7 of the Device Status condition register is setio 1. See
Chapter 5 for a description of that bit.

The analyzer uses an Operation Complete (OPC) flag to keep track of overlapped commands
that are still pending (not completed). The OPC flag is reset to 0 when an overlapped
command is pending. It is set to 1 when no overlapped commands are pending. You can not
read the OPC flag directly, but all of the following common commands cause the analyzer to
take some action based on the setting of the flag:

e *WAI — forces the analyzer to wait until the OPC flag is set to 1, but does not
affect the controller ‘

» *QPC? — forces the controller to wait until the OPC flagis set to 1

¢ *OPC — informs the controller when the OPC flag is set to 1, but leaves it free
to perform other tasks until it receives a service request

Each command requires a different amount of overhead in your program. *WAI requires the
least overhead, *OPC requires the most.

29

Behavior in an HP-IB System

*YWAI

This command holds off the processing of subsequent device commands until all overlapped
commands are completed (the OPC flag is set to 1). An example will demonstrate the effect
of the *WAI command.

Suppose you want to determine which frequency component of a signal contains the greatest
amount of energy. You might send the following series of commands:

OUTPUT 711;"INIT.STAT STAR" IStart the measurement,
OUTPUT 711;"MARKC X AMAX: GLOB" 1Search for max energy.
CUTPUT 711;"MARK:X?" !Which frequency?

The following timeline shows how the processing times of the three commands relate to
each other.

| |
" INIT.STAT STAR '
| [
" MARKCOCAMAY: GLOB
s
" MARK:X?

As you can see, INIT:STAT STAR is an overlapped command because it does not hold off
the processing of MARK:X:AMAX:GLOB. You may also recall that MARK:X:AMAX:GLOB
is not considered complete until the measurement is complete. So in this example, the
marker searches for maximum energy before the measurement is complete. This may result

in the MARK:X query returning an incorrect value. To solve the problem, you can insert a
*WAI command.

OUTPUT 741" INIT:STAT STAR' !Start the rneasurement.
OUTPUT 711;"*WAl 'Wait until complete.
OUTPUT 711;"MARKCAMAX: GLOB" ISearch for max energy.
OUTPUT 711;"MARK:X?" "Which frequency?

The timeline now locks like this.

| |
" INIT:STAT STAR :
=Y |

|
MARK:X: AMAX:GLOB

|

CMARKX? |

The *WAI command keeps the search from taking place until the measurement is completed.
The MARK:X query will return the correct value,

Behawvior in an HP-IB System

*QPC? and *OPC

If you send *OPC?, 1 is placed in the analyzer’s output queue when the OPC flag is set to 1.
This allows you to effectively pause the controller until all pending overlapped commands
are completed. Just design your program so that it must read the queue before it continues.

*OPC? does not hold off the processing of subsequent commands; it only informs you when
the OPC flag is set to 1. As a result, you should not send additional overlapped commands
to the analyzer between the time you send *OPC? and the time you read 1 from the
output queue.

If you send *OPC, bit 0 of the Event Status register is set to 1 when the OPC flag is set to 1.
This allows you to use the analyzer’s register structure to generate a service request when
all pending overlapped commands are completed. However, your program must also have
enabled bit O of the Event Status register and bit 5 of the Status Byte register. When you
synchronize the analyzer and controller in this manner, the controller is free to perform
gome other task until the service request is generated.

*OPC does not hold off the processing of subsequent commands; it only informs you when
the OPC flag is get to 1. As a result, you should not send any commands to the analyzer
between the time you send *OPC and the time you receive a service request.

Delayed Result Commands

Delayed result commands change analyzer settings, but the changes they make do not
necessarily affect the current measurement. After sending one or more delayed result
commands you must always restart your measurement with the INIT:STAT STAR command.
This ensures that changes made by delayed result commands will affect the measurement.

2-11

Behavior in an HP-IB System

Passing Control

The analyzer requires temporary control of the HP-IB to complete some commands. (In the
description of each command, a field called ““Pass control required”’ indicates whether or
not the command requires control of the bus.) After sending such a command, the active
controller must pass control to the analyzer. When the analyzer completes the command,

it automatically passes control of the bus back to the controller. For control to be passed
back and forth smoothly, you must take steps to ensure that:

* The analyzer has the correct address of the controller so that it can pass control
back when the command is completed

» The controlier will be informed when control has been passed back
A procedure for passing control follows:
1. Send the controller’s HP-IB address with the *PCB command.
2. Clear the analyzer’s status registers by sending the *CLS command,

3. Enable the analyzer’s status registers to generate a service request when the
Operation_Complete bit is set. (*ESE should be sent with a value of 1 and
*SRE should be sent with a value of 32.)

4. KEnable the controller to respond to the service request.

5. Send the command that requires control of the bus followed by the
*OPC command.

6. Pass control to the analyzer and wait for the service request. The service
request indicates that the command has been completed and control has been
passed back to the controiler.

NOTE For this procedure to work properly, no overlapped commands should be pending
except the command that requires control of the bus, For more information on
overlapped commands, see “Synchronization” in this chapter.

Chapter 6, “Programming Examples,” contains an example program that passes control to
the analyzer. In the example, control is passed so the analyzer can print the contents of
its screen.

2412

Chapter 3
Programming with
Hierarchical Commands

Introduction

The HP 35660A’s device-specific HP-IB commands are derived from elements of 2 command
hierarchy (or tree). This chapter describes the command tree and discusses special
characteristics of the analyzer’s hierarchical commands. The chapter also describes the
general syntax for program messages, which are used to send these commands to the
analyzer. Finally, the chapter describes the general syntax for response messages, which the
analyzer uses to return data to other devices on the HP-IB.

3-1

Programming with Hierarchical Commands

The Command Tree

The HP 35660A’s command tree organizes related analyzer functions by grouping them
together on a common branch. Each branch is assigned a mnemonic to indicate the nature of
the related functions. For example, the analyzer’s marker functions are grouped together on
the MARKER branch of the command tree. The MARKER branch is only one of 25 major
branches on the tree. The other 24 branches organize the remaining device-specific
functions. The branches are also referred to as subsystems.

When many device functions are grouped together on a particular branch, additional
branching is used to organize device functions into groups that are even more closely related.
The MARKER branch serves as a good example because the analyzer provides many marker
functions. (See Appendix C for a complete list of commands that access marker functions.)
Band marker functions are grouped together on the BAND branch of the MARKER branch,
harmonic marker functions are grouped together on the HARMONIC branch, and so on.

The branching process continues until each analyzer function is assigned to its own branch.
For example, the function that tarns the analyzer’s harmonic markers on and off is assigned
to the STATE branch of the HARMONIC branch of the MARKER branch.

The command that accesses a particular function is created by:

1. Concatenating the mnemonics on a direct path from the base of the tree to the
function’s branch.
For example, MARKERHARMONICSTATE
> > >

2. Separating the mnemonics with colons to indicate branching points on the tree.
For example, MARKER:HARMONIC:STATE

3. Appending the value you want assigned to the function.
For example, MARKER:HARMONIC:STATE ON

In Appendix C, steps 1 and 2 have already been completed for each command. Also, a
particular command’s position in the command tree is indicated both by colons and by levels
of indentation. After completing step 3 for one of these commands, you can send it to the

analyzer via your controller’s language system. If you are using HP BASIC, for example,
you could send:

OUTPUT 711,"MARKERHARMONIC:STATE ON*

3-2

Frogramming with Hierarchicat Commands

Sending Multiple Commands

You can send multiple commands within a single program message by separating the
commands with semicolons (;). For example, the following program message — sent within
an HP BASIC statement — would turn the harmonic markers on and set the number of
harmonic markers to 3:

OUTPUT 71 1;"MARKER:HARMONIC :STATE ON;:MARKER:HARMONIC:COUNT 3

The analyzer’s command parser allows you to simplify the previous program message. This
is because one of the parser’s main functions is to keep track of a program message’s position
in the command tree. If you take advantage of this parser function, you can create the
equivalent, but simpler, program message:

OQUTPUT 711,"MARKER:HARMONIC:STATE ON;COUNT 3"

In the first version of the program message, the semicolon that separates the two commands
is followed by a colon. Whenever this occurs, the command parser is reset to the base of the
command tree. As a result, the next command is only valid if it includes the entire
mnemonic path from the base of the tree.

In the second version of the program message, the semicolon that separates the two
commands is not followed by a colon. Whenever this occurs, the command parser assumes
that the mnemonics of the second command arise from the same branch of the tree as the
final mnemonic of the preceding command. STATE, the final mnemonic of the preceding
command, arises from the MARKER:HARMONIC branch. So COUNT, the first mnemonic
of the second command, is also assumed to arise from the MARKER:HARMONIC branch.

Here is a longer series of commands — again, sent within HP BASIC statements — that can
be combined into a single program message:

OUTPUT 711;"AVERAGE:STATE ON"

QUTPUT 711;"AVERAGE:TYPE PEAK"

OQUTPUT 711;*"AVERAGE:COUNT 100"

QUTPUT 711;"AVERAGE :DISPLAY:RATE 20
OUTPUT 711;"AVERAGE:DISPLAY:RATE:STATE ON*

The single program message would be:
QUTPUT 711;"AVERAGE:STATE ON;TYPE PEAK;COUNT 100;DISPLAY:RATE 20;RATE:STATE ON*

3-3

Programming with Hierarchical Commands

Command Abbreviation

Each command mnemonic has a long form and a short form. The short forms of the
mnemonics allow you to send abbreviated commands. The mnemonics’ short forms are
created according to the following rules:

1.

If the long form of the mnemonic has less than four characters, the short form is the
same as the long form. For example, ARM remains ARM.

If the long form of the mnemonic has exactly four characters, the short form is the
same as the long form. For example, USER remains USER.

If the long form of mnemonic has more than four characters and the fourth character

is a consonant, the short form consists of the first four characters of the long form.
For example, AVERAGE becomes AVER.

If the long form of mnemonic has more than four characters and the fourth character
is a vowel, the short form consists of the first three characters of the long form. For
example, LIMIT becomes LIM.

NOTE The syntax descriptions in Chapter 7 use upper-case characters to identify the

short form of a particular mnemonic.

If the rules listed in this section are applied to the last program message in the preceding
section, the statement:

OUTPUT 711;"AVERAGE:STATE ON;TYPE PEAK;COUNT 100;DISPLAY'RATE 20;RATE:STATE ON"
becomes:

3-4

OUTPUT 711;"AVER:STAT ON;TYPE PEAK;COUN 100;DISP:RATE 20;RATE:STAT ON*

Programming with Hierarchical Commands

Message Syntax

As mentioned in Chapter 2, the analyzer uses program messages and response messages to
communicate with other devices on the HP-IB. This section uses syntax diagrams to describe
the general syntax rules for both kinds of messages.

Conventions

The flow of syntax diagrams is generally from left to right. However, elements that repeat
require a return path that goes from right to left. Any message that can be generated by
following a diagram from its entry point to its exit point, in the direction indicated by the
arrows, is valid.

Angle brackets < > enclose the names of syntactic items that need further definition. The
definition is included either in the text accompanying the diagram, in a subsequent diagram,
or in the next section, “Common Definitions.”

The symbol ::= means “is defined as.” When two items are separated by this symbol, the
second item can replace the first in any statement that contains the first item.

Commeoen Definitions
The syntax diagrams have the following definitions in common:

» <LF> is the line feed character (ASCII decimal 10).

* <7 END> is assertion of the HP-IB END message while the last byte of data is on
the bus.

* <SP> is the space character (ASCII decimal 32).
* <WSP> is one or more white space characters (ASCIT decimal 0-9 and 11-32),
* <digit> is one character in the range 0-9 (ASCII decimal 48-57).

¢ <alpha> is one character of the alphabet. The character can be either upper-case
(ASCII decimal 65-90) or lower-case (ASCII decimal 97-122) unless otherwise noted.

Special Syntactic Elements

Several syntactic elements have special meanings. They are:

* (colon): — When a command or query contains a series of mnemonics, the
mnemonics are separated by colons. A colon immediately following a mnemonic
tells the command parser that the program message is proceeding to the next level
of the command tree. A colon immediately following a semicolon tells the
command parser that the program message is returning to the base of the
command tree. For more information, see “The Command Tree’’ and “Sending
Multiple Commands™ at the beginning of this chapter.

3-5

Programming with Hierarchical Commands

" (semicolon) ; — When a program message contains more than one command or

guery, a semicolon is used to separate them from each other. For example, if you
want to autorange the analyzer’s inputs and then start a measurement using one

- program message, the message would be:

INPUT:RANGE:AUTO ON;:INITIALIZE:STATE START

(comma), — A comma separates the data sent with a command or returned with a
response. For example, the SYSTEM:TIME command requires three values to set
the analyzer’s clock: one for hours, one for minutes, and one for seconds. A
message to set the clock to 8:45 AM would be:

SYSTEMITIME 8,450

<WSP> — One or more white space characters are optional in many parts of a
program message. However, at least one is required to separate a command or
query from the data sent with that command or query. The previous example
contains a space between the command (SYSTEM:TIME) and the data sent with
the command (8,45,0).

<message terminator> — A message terminator is required at the end of a
program message or a response message. Program message terminators are
described in ‘“‘Program Message Syntax.” Response terminators are described in
“Response Message Syntax.”

Program Message Syntax

The syntax for a terminated program message is:

<program
messtge>

i ! g <PTOGrOM messagel
'ﬂ <WSP> termincior= |

<program message terminator>:;=

3-6

¥

%w“’@]

—WPE <| %--kv <AFEND> g

s

Programming with Hierarchical Commands

<program message>::=

/—“-gr:;ufg‘!f;‘lﬁm r;wa—B m

<Progran . 5
‘Imessage unit>

<program message unit>:s=

<gommand
message unit> ? =

<query
message unif>

<command message unit>:=

wsp>‘

j@“{—‘ <WSP>
ot —

[<program | g <program |
...... o] B wtw g e W

R
v

<query message units> ==

¥

ol SProgram - ! <program |
header> ot J‘

3-7

Programming with Hierarchical Commands

<program header>::=

<ghnple
B program heclder>} ih’
. <compound
program heoder= i
<COMMOn
orogram header>

<simple program header>::=

. <program
mnemonic>

<compound program header>:;=

mnemonic>

<common program header>:=

<progrom
* mnemonic>

Programming with Hierarchical Commands

<program mnemonic> =

—fed <alphas (e

N <cligit>

<program data>: =

——-—-——-P-E <NRf decimal Hﬁv’ <guffix dota» B
numeric dafa> P i I
<¢character k P
data>
-—n—i <siring data>
<BXDrEssion
data>

¥

=definife length S
block data>

- <indefinite length T ,{
block dato>

T The definition of indefinite length block data includes termination with <LF><~END>.
This serves the dual function of terminating the data and terminating the program message.

Program data and response data are described in Chapter 4, *“Transferring Data.”
<suffix data> is dependent on the command sent.

Programming with Hierarchical Commands

Response Message Syntax

The syntax for a terminated response message is:

<response <response messdage
massage> | terminator=

<response message terminator> =

hh{ <EJ:""> }———~h‘ <AEND> J———Evnl

<response message>i =

<response J <respense | |

—t'_p header> B | data> |
N

<response header> is the <program header> sent with the query that generated the
response. It is only returned as part of the <response message> if SYSTEM:HEADER is
ON. Also, all <alpha> characters in the <response header> will be upper-case, even if they

were lower-case in the <program header:,

3-10

Programming with Hierarchical Commands

<response data>:i=

<NR1 decimal
numeric dato>

v

& <NRZ decimal
numeric dafa>

<NR3 decimal
numeric datg>

o <Character
data>

<string dato>

<gxprassion
data>

<deflnite length
block datg>

(]
-

!<indaféni%a length ! '{
tlock data>

T The definition of indefinite length block data includes termination with <LF> <~ END>.
This serves the dual function of terminating the data and terminating the response message

Response data and program data are described in Chapter 4, “Transferring Data,”

3-11

Transferring Data

Chapter 4
Transferring Data

Data can be transferred between the analyzer and a controller via the HP-IB data lines,
DIO1 through DIO8. Such transfers occur in a byte-serial (one byte at a time), bit-parallel
(8 bits at a time) fashion. This chapter discusses:

* The different ways data bytes can be encoded
» The formats used to transfer different types of data
¢ The structure of HP 35660A files

Data Encoding

Two kinds of data encoding are used when data is transferred between the HP 35660A and
an HP-IB controller: ASCII encoding, and binary encoding. All device commands and
queries are sent over the HP-IB as a series of ASCII-encoded bytes. In most cases, the data
sent with a command or returned in response to a query is also ASCII-encoded. However,
when a large block of data is transferred, it can be either ASCII-encoded or binary-encoded.

Each command that is used to transfer block data has an associated command that allows
you to select data encoding. The commands for selecting data encoding use the parameter
ASC to specify ASCII encoding. They use either BIN, FP32, or FP64 to.specify binary
encoding. For example, SYST:SET transfers a block of data that defines the instrument
state. The command SYST:SET:FORM allows you to specify encoding for the data in the
block. Another command, TRAC:DATA, transfers a block of trace data. In this case, the
command TRAC:HEAD:AFOR allows you to specify encoding for the data in the block.

ASCII Encoding

Most data that is transferred between the analyzer and an HP-IB controller is encoded using
the ASCII 7-bit code (defined by the ANSI X3.4-1977 standard). When an ASCII-encoded
byte is sent over the bus, bits 1 through 7 of the byte (bit 1 being the least significant bit)
correspond to the HP-IB data lines DIO1 through DIO7. DIOS is ignored. The formats used
for ASClI-encoded data are discussed in “Data Formats® later in this chapter.

4-1

Transferring Data

Binary Encoding

Binary encoding can only be used for block data. In addition, binary encoding can only be
used for the numeric fields in block data. For example, SYST:SET transfers a block of data
that defines the instrument state. Many of the fields in the block contain character data.
The character data is always ASCII-encoded, even when you have specified binary encoding.

Numeric fields in block data can contain either integers, fixed point numbers, or floating
point numbers. A binary-encoded integer format is used to represent integers when binary
encoding is specified. A binary floating point format is used to represent fized and floating
point numbers when binary encoding is specified.

Binary-Encoded integers

Binary-encoded integers can be one, two, or four bytes long. The most significant byte of two
and four byte integers is always sent aover the HP-IB first. The order of the bits corresponds
to the order of the HP-IB data lines. The most significant bit corresponds to DIOS and the
least significant bit corresponds to DIOL. Data is right justified and in two’s complement
notation. The most significant bit is used as the sign bit.

For example, in a two-byte integer, 7 (decimal) would be encoded as:

byte 1 byte 2
DEO'8‘7’(:35»f¥n’.,3211 .010187654321!
t i |
00000C000 00000111

Binary Floating Point Numbers

When binary encoding is specified, the 32-bit and 64-bit binary floating point formats defined
in the IEEE 754-1985 standard are used to represent both fixed and floating point decimal
numbers. Many controllers, and the languages that run on them, use these formats. Both
formats have three fields in common, but the length of the fields are different for each. The
fields and their bit lengths appear in the following table:

Table 4-1. Fieids In Binary Floating Point Numbers

Field Width of Field
32-bit format 64-bit format
sign (s) 1 bit 1 bit
exponent (e} 8 11
fraction (f) 23 52

4.2

Transferring Data

When the 82-bit format is used, the decimal value of the exponent field ranges from —126 to
+127, with a bias of +127. When the 64-bit format is used, the decimal value of the
exponent field ranges from —1022 to +1023, with a bias of +1023.

You can use the following formulas to determine the value (x) of a 32-bit binary floating point
number. (s, e, and f must be converted from binary to decimal before using the formulas.)

ife=285andf=0 then x is not a number

lfe =255andf=0 then x = —1%()

10 < e < 255 then x = —15(28 7% (1

fe =0andf=0 thenx = —15(2°" 1280 + 1
lfe=0andf=0 thenx = —1°(0)

32-bit binary floating point numbers are sent over the bus as follows:

DO 8765654321
I E

byte 1 seeeceeceecee
byte 2 eftfffff
bytes 3 and 4 fFiffffff

You can use the following formulas to determine the value (x) of a 64-bit binary floating
point number. (Again, s, e, and f must be converted from binary to decimal before using
the formulas.)

lfe=2047 andf= 0 then x is not a number

fe =2047 andf =0 then x = —13(e)

1§10 < e < 2047 then x = —15(2°7 %31 4 1)
lfe =0andf=0 thenx = —15(2°7 %2210 + 1)
lfe =0andf=0 thenx = —1°(0)

64-bit binary floating point numbers are sent over the bus as follows:

DIO;87654321]
|

byte 1 seeeceeee
byte 2 eeeef f ff
bytes 3through 8 LIS R R T A R O |

43

Transferring Data

Here is an example of a number encoded in the 32-bit binary floating point format:

byte 1 byte 2 byte 3 byte 4
01000001 10010000 Boeoo000 60000000
seccacee effff{fff FELLLELE FEELLLEL

Where:

binary decimal
s = 0 = 0
e= 10000011 = 131
f= 001 = 125
Therefore:

-1)0(2(131 -—127))
(2M(1.125)
18

X (1.125)

il

4.4

Transferring Data

Data Formats

The HP 35660A uses a number of different data formats to represent the different types of
data it uses. The formats are described in this section using syntax diagrams.

Conventions

The flow of syntax diagrams is generally from left to right. However, elements that repeat
require a return path that goes from right to left. Any data you can generate by following a
diagram from its entry point to its exit point, in the direction indicated by the arrows,

is valid,

Angle brackets < > enclose the names of syntactic items that need further definition.
The definition is included either in the text accompanying the diagram, or in the next
section, “Common Definitions.”

Common Definitions

The syntax diagrams have the following definitions in common:

¢ < LF > is the line {feed character (ASCII decimal 10).

¢ < ~“END > is assertion of the HP-IB END message while the last byte of data is on
the bus.

» < SP > is the space character (ASCII decimal 32).

* < WSP > is one or more white space characters (ASCII decimal 0-9 and 11-32).
¢ < digit > is one character in the range 0-9 (ASCII decimal 48-57).

¢ < non-zero digit > is one character in the range 1-9 (ASCII decimal 49-57).

¢ < alpha > is one character of the alphabet. The character can be either upper-case
(ASCII decimal 65-90) or lower-case (ASCII decimal 97-122) unless otherwise noted.

Decimal Numeric Data
The analyzer returns three types of decimal numeric data in response to queries:

¢ Integers — returned using the NR1 format
* Fixed point numbers— returned using the NR2 format
* Floating point numbers — returned using the NR3 format

You can use a more flexible format, the NRf format, when sending any of the three decimal
numeric data types to the analyzer. All four formats are described in the following
syntax diagrams.

45

Transferring Data

NR1 format: o

v o] <cliifs
A w1_!§.glf

;

p_—

k»@_

NR2 format:

oo] < dgr'hﬂm;-ﬂg. }[
Luwj&.g :.

)

NR3 format:

<cligit=

—

4.6

Transferring Data

~, Character Data

The format you use to send character data is:

The “ " in the circle is the underscore character (ASCII decimal 95).

The format used when the analyzer returns character data is the same as the format
used to send character data, with one exception — the analyzer never returns lower-case
alpha characters.

String Data

The format you use to send string data is:

f

ASC char other |
then double-quete! & T

7

Note that you must use two double-quote characters (") to represent one (*) in a string that
is delimited by double-quote characters. You must use two single-quote characters () to
represent one (°) in a string that is delimited by single-quote characters.

The format used when the analyzer returns string data is the same as the format used to
send string data, with one exception — the analyzer never returns string data using the
single-quote path.

4.7

Transterring Data

Expression Data

The format you use to send expression data is:

¥ .. <expression
elemeni>

The the only command that uses expression data is USER:EXPR. The syntax desecription for
that command contains a list of acceptable < expression elements >.

The format used when the analyzer returns expression data is the same as the format used
to send expression data.

Block Data

The analyzer typically uses one of two block data formats to send or receive large amounts
of data:

* The definite length block format
* The indefinite length block format

The definite length format is used when binary encoding has been specified for the block.
The indefinite length format is usually used when ASCII encoding has been specified.
However, some commands that send block data simply use one of the decimal numeric data
formats (NR1-3 or NRf) when ASCII encoding has been specified. In these cases, the block is
sent as a series of NRx numbers separated by commas.

4.8

Transferring Data

Definite Length Block Data
The format you use to send definite length block data is:

{
" encn-zero gt | » I B v
] <"Ci;if.’mlj5 d[gfi'wjj"% <dl—9!%> st - “““‘E data byle o

;

The elements #, < non-zero digit >, and < digit > make up a header for the block data.
< non-zero digit > indicates how many times < digit > is repeated, The < digits > are
interpreted as a single decimal number, which indicates how many bytes of data follow in
the block. Here is an example:

| Block Header 1 Block Data
l byte 1 byte 2 byte 3 hyte 4 ‘ byte 5 byte 6 byte 19
. # 2 1 5 < data_byte 1 > <data_byte 2> .. <« dafa byte 15 >

< non-zero digit > is 2, which means that the following two bytes should be taken together
as a gingle deci&:al number. In this case, the number is 15. ’I‘%e following i 5 bytes are the
5th through 19™ bytes of the data transfer, but they are the 1°" through 15 bytes of the
data block.

Indefinite Length Block Data
The format you use to send indefinite length block data is:

kw_@_ng byte jm@-{ <LF> llww-v{ <nEND> |

The first two bytes of the data transfer, # and 0, make up a header for the block data.
The data itself does not begin until the third byte of the data transfer.

4-9

Transferring Data

File Formats

The HP 35660A can save and recall five different file types. They are:

* The math file
¢+ The limit table file
* The data table file
¢ The instrument state file
» The trace file
This section describes each of the file types.

Basic File Structures

The following five figures show you the basic structure of the different file types. Each
file is made up of a file header followed by one or more records. The records are arranged
in a hierarchical fashion. The hierarchy can be thought of as a series of parent/child
relationships. Arrows in the figures point from a parent record to each of its child records.
The file header and all of the records are deseribed in tables at the end of this chapter.

File Header
Math Record

£

Expression Record !
: ¥
Expression Record |
Expression Record

Expression Record |
Expression Record '

1 This record is optional.

Figure 4-1. Math Flle Structure

File Header
Limit Table Reference Record

Limit Table Record

Figure 4-2. Limit Table File Structure

4-10

Transferring Data

File Header
Data Table Reference Record

b Data Table Record

Figure 4-3. Dala Table File Structure

File Header
Master State Record

ee——aeffegsurement State Record
{ Channel State Reeord
Channel State Record
——=Display State Record
el Il\’[ath Record
Expression Record |
L Expression Record |

Expression Record +

s
!

Expression Record
xpression Record
.| Trace State Record
{Trace State Record
—#System State Record
————+Marker State Record
L{Traeedepandent Marker Record

Trace-dependent Marker Record
Limit Table Reference Record

Limit Table Record |
Limit Table Record |
Limit Table Record |
Limit Table Record '
Limit Table Record E
Limit Table Record !
Limit Table Record '

| Limit Table Record '

+{Data Table Reference Record

"Data Table Record |
| Data Table Record i

T This record is optional.

Flgure 4-4. Instrument Siate Flie Structure

4-11

Transferring Data

File Header
Complete Result Record

Vector Record

L Measurement Header Record
Channel Header Record
Channel Header Record t
Display Header Record

T This record is optional.
Figure 4-5. Trace File Structure

Special Fields in a Hecord

All records contain the following three special fields:

» Record Type
* Record Length
e Total Record Reference Count

If a record is a parent record, it contains at least one additional special field called a
Record Reference.

Record Type

The Record Type field contains a number that uniquely identifies the type of data contained
in the record. For example, all records with a Record Type number of 100,794,368 contain
HP 35660A channel header data. The fields in any two such records are the same, but the
values in each record’s fields may be different. For example, one Channel Header record may
contain channel 1 header data, while another Channel Header record contains channel 2
header data.

Record Length

The Record Length field contains a number that specifies the length of the record. If the
record is ASCII-encoded, the length is specified as a number of lines. If the record is
binary-encoded, the length is specified as a number of bytes.

NOTE The length of a binary-encoded record is always a multiple of 128. If the number of
bytes required by a record’s fields is not divisible by 128, then the record is padded
with zeros to the nearest multiple of 128.

Total Record Reference Count

The Total Record Reference Count field contains a number that specifies how many child
records are referenced from the record. If the number is 0, then the record is not a parent
record. If the number is greater than 0, then the record is a parent record and will contain
at least one Record Reference field.

4-12

Transferring Data

Hecord Reference

All parent records contain Record Reference fields. It is these fields that link individual
records together to form a particular file type. A Record Reference forms the links by:

* Identifying the type of child record that follows the parent record

* Indicating how many times that child record is repeated in the file

The position of a Record Reference in a parent record determines the identity of the child
record. For example, line 4 of the Math Record (see Table 4-2) is used as a Record Reference
for Expression Records. The value assigned to a Record Reference determines how many
times the record is repeated in the file. Using the Math Record again, if the value of line 4 is
2, then two Expression Records will follow the Math Record.

ASCH | Binary Maaning of Data/ Data Range/
Index Intlex Data Type Units
linet | byle1:4 REGGRD TYPE lang 393216 (D0UB0000 when
converted to hexadecimal)
2 58 RECORD LENGTH: ASCH or Binary long 14 lines or128 bytes
3 e12 TOTAL RECORD REFERENGE COUNT lang 05
4 1318 RECCRD REFERENCE: # of expression records tg foliow larg 05
5 17:24 real part of constant X1 double 340, 28E + 36:340.28E + 38
[2532 Imaginary part of constant K1 double ~340.28E +36:340.26E + 38

Table 4-2. Partial Math Record Description

The Order of Records in a File

Two rules determine the order of records in a file.
1. Child records always follow immediately after their parent records.

2. If there are two or more Record References in a parent record, their order determines
the order of the child records.

An example will help to illustrate these rules. Suppose that the master record (Record
type M) of a file contains the following lines:

line description value

RECORD TYPE

RECORD LENGTH

TOTAL RECORD REFERENCE COUNT
RECORD REFERENCE: Record type X
RECORD REFERENCE: Record type Y
RECORD REFERENCE: Record type Z

GO A @ =
-t Py = O

The order of records in the file is:

Record 1 (type M)
Record 2 (type X)
Record 3 (type Y)

Record 4 (type Y)
Record b (type Z)

413

Transferring Data

Example File

The following illustration (Figure 4-6) shows the contents of an example Math file. The file
contains a File Header, a Math record, and two Expression records.
0 File
1282 Header
0
1
393216
&
3932186 RECORD TYFE Math
14 RECORD LENGTH record
2 TOTAL RECORD REFERENCE COUNT
2 RECORD REFERENCE: number of
25.2 Expression records to follow
16.3
1
0 14 lines
1
0 record data
1
0
1
0
i
268435456 RECORD TYPE - Expression
5 RECORD LENGTH record 1
0 TOTAL RECORD REFERENCE COUNT
1 5 lines
IFFT(SPECH) i record data
¥
268435456 RECORD TYPE 4 Expression
5 RECORD LENGTH record 2
C TOTAL RECORD REFERENCE COUNT
gPECf*K! i record data 5 lines
¥

4-14

Figure 4-6. Contents of an Example Math File

Transferring Data

Controller Access to Files

Two HP-IB commands give a controller direct access to the information available in
HP 35660A files. The commands are:

+ SYST:SET
» TRAC:DATA:SET

SYST:SET provides direct access to the instrument state file structure. Figure 4-4 shows
the structure of transferred data with one exception — the file header is not used for direct
transfers between the analyzer and a controller. TRAC:DATA:SET provides direct access to
the trace file structure. Figure 4-5 shows the structure of transferred data — again, with
the exception that the file header is not used for direct transfers between the analyzer and
a controller.

4-15

Transferring Data

Record Descriptions

The following tables describe the individual records from which the ansalyzer’s five file types
are built. Each table includes:

¢ A description of the individual fields in the record

¢ The acceptable range of values for data in the field
* A binary and an ASCII index for each field

= An indication of the type of data used in each field

Fields require both binary and ASCII indexes because of differences related to data encoding.
When a file is binary-encoded, each field is assigned a fixed number of bytes. So the index
into a particular field of a binary-encoded file is a range of byte numbers. When a file is
ASCII-encoded, the number of bytes in a field is variable. However, all fields are separated
by line feed characters (ASCII decimal 10). So the index into a particular field of an
ASCII-encoded file is a line number.

The file data types are as follows:

* Char[n] — This data type consists of a series of ASCII-encoded bytes. When the
whole file is ASCII-encoded, [n] specifies the maximum number of bytes in the
field. When the whole file is binary-encoded, [n] specifies the actual number of
bytes in the field.

* Bool — This data type has acceptable values of 0 and 1. When the file is
ASCII-encoded, the value is simply transferred as an ASCII-encoded 0 or 1. When
the file is binary-encoded, the 0 or 1 is transferred as a one-byte, binary-
encoded integer.

* Bhort — This data type is used for integers (maximum range of —32768 to
+32767). When the file is ASCII-encoded, values are transferred using the NR1
format. When the file is binary-encoded, values are transferred as two-byte,
binary-encoded integers,

* Long — This data type is used for integers (maximum range of ~2,147,483,648 to
+2,147,483,647). When the file is ASCII-encoded, values are transferred using the
NR1 format. When the file is binary-encoded, values are transferred as four-byte,
binary-encoded integers.

* Float — This data type is used for single-precision fixed point and floating point
numbers. When the file is ASCII-encoded, values are transferred using either the
NR1, NR2, or NR3 format. When the file is binary-encoded, values are transferred
using the 32-bit binary floating point format.

* Double — This data type is used for double-precision fixed point and floating point
numbers. When the file is ASCII-encoded, values are transferred using either the
NRI, NRE2, or NR3 format. When the file is binary-encoded, values are transferred
using the 64-bit binary floating point format.

* E-short — This data type is simply a short whose value is encoded. The meaning
assigned to each value is included as part of the field’s description.

4-18

Table 4-3 . Channel Header Record

Transferring Data

ASCH | Binary Meaning of Data/ Dala Range/
index Index Data Type Units
fine 1 byte 1:4 RECORD TYPE lang 100794368 (06020000 when
converted to hexadecimal)
2 5.8 RECORD LENGTH: ASCH or Binary long 12 lines or 128 bytes
3 912 TOTAL RECORDS REFERENCED long 0
4 13:20 fime-record overlap per average {requested) double 0:0.98
5 21:22 overloads occuired during measurement (0=no, 1==yes) short 01
6 23:24 input coupling {1=DC, 2=AC) g-short 1:2
7 2532 input range double ~51:27 dBVrms
8 3334 windowing function 1 = Uniform e-short 1.8
2 = Hanning
3 = Fat Top
4 {not supported)
§ = force
& = exponential
79 3550 name of channel providing this vector's data charf16]
10 51:.58 force/exponential window decay double 0:;1E4+100s
13 5856 force window width dotible 0:1E4+100s
12 67.68 input grounding {0 =grounded, 1="floating) e-short 0t
- 69:128 padding {binary file only}

+This field is ignored on recall,

417

Transferring Data

Table 4-4, Channel State Record

ASCH Binary Meaning of Data/ Daia Hange/
linlex Index Data Type Units
fine1 | hyte 14 RECORD TYPE long 218103808 (0dD00000 when
converted fo hexadecimal)
2 58 RECORD LENGTH: ASCH or Binary long 18 lines or 128 bytes
3 912 TOTAL RECORD REFERENCE COUNT long 0
4 1314 # of the channel this record describes short 1.2
5 15:16 windowing function 0 = Uniform e-short 0:4
1 = Hanning
2 = Flat Top
3 (not stipported)
4 = force/exponential
§ 17 force/exponential type (O=force, T=exponential) hool 01
7 18:25 force/exponential window decay double 01E+100 s
8 26:33 force window width double 01E+100 s
g 34:41 input rarge double 51,27 dBVrms
10 42 aufo-range state (0==off, 1==on) boal 0
11 43 input grounding (0 =grounded, 1=floating) bool A
12 44 input coupling (G=0C, 1=AC) bool 01
13 45 engineering units state {0=volts active, 1=EUs active) bool 0:1
14 46:53 voits 1o eng. units conversion factor couble —1E+100:1E+ 100, except 0
15 54:69 eng. units labei for input range charf16} | upper- and lower-case alpha,
numbers, spaces, and
et =T NOB{Y
16 T0:77 dBvrms fo normal units conversion factor double {dependent on normat units)
17 78:83 active normal units fabel for input range char{16] | dBVrms, dBVpk,
Vrms, V dBm
181 94101 trigger delay double (range dependent on span) s
— | 102128 padding {binary fite eniy)
Tabie 4-5 . Complete Result Record
ASCH Binary Meaning of Data/ Data | Range/
Index Index Data Type | Units
line 1 byte 1:4 RECORD TYPE long 262144 (06640000 when
converted o hexadecimal)
2 58 RECORD LENGTH: ASCIt or Binary long 7 lines or 128 bytes
3 912 TOTAL RECORDS REFERENCED long 45
4 1318 RECORD REFERENCE: # of vector records to foliow long 1
5 17.20 RECORD REFERENCE: # of measurement header records fo follow | leng
8 2124 RECORD REFERENCE: # of channel header records fo follow long 1.2
7 2528 RECORD REFERENCE: # of display header records fo follow long 1
— 29:128 padding (binary fliie anly)

4-18

Table 4-6. Data Table Record

Transferring Data

ASCl | Binary teaning of Data/ Data Range/
ndex Index Bata Type Units
line1 | bytel:4 RECORD TYPE long 369088752 (16000080 when
converted i hexadecimal)
2 58 RECORD LENGTH: ASCH of Binary long 8:20586 lines or
128:18512 bytes
3 g1z TOTAL REGORD REFERENCE COUNT long 8
4 1314 # of the data fable this record describes short 01
5 15 data fable calculation (0= off, 1=on) boot 01
6 1617 # of points in the table short 1:401
7 18:21 skip from record startto data start long 7 lines or 21 bytes

Data table data starts here. It consists of a number ¢f points that are directly adjacen? fo each other in the record. Each pointis

defined by 2 values. Points are repeated n times fo a maximum of 401 points. A point takes this form:

8 2“;2:25 x-axis value float ~120E+3120E+3Hz or s
9 26:29 y-axis valle float (dependent on vertical units}
- - points 2 through n
- - padding to multipte of 128 (binary file only)
Table 4-7. Data Table Reference Record
ASCH | Binary Meaning of Data/ Dala Ranga/
Index index Data Type Units
finet | byte1:4 RECORD TYPE long 524288 (00GB0000 when
converted to hexadecimal)
2 5:8 RECORD LENGTH: ASCI or Binary long 4 lines or 128 hytes
3 912 TOTAL RECORD REFERENCE COUNT oy 0:2
4 13:18 RECORD REFERENCE: # of data table records to foliow lang 0:2
o 17:128 padding {binary file only}

4-19

Transferring Data

4-20

Table 4-8 , Display Header Record

ASCH Binary Meaning of Data/ Data Range/
Index Index Data Type inits
line t byte 1,4 RECORD TYPE tong 167837696 (CADT0000 when
converted 1o hexadecimal)
2 5:8 RECCRID LENGTH: ASCH or Binary long 21 lines or256 bytes
3 912 TOTAL RECORDS REFERENCED long 0
4 13:14 fype of coordinates 0 = finear magnitude g-short 0.8
1 = logarithmic magnitude
2 = magnitude
3 = phase
4 = real
5 = imaginary
6 = group delay
7 = uger math
8 = nult
5 15 data labelling {0==off, 1=0n) bool a1
8 18 X-axls scaling (0=lineas, 1=logarithmic) bool 0:1
7 17.32 y-axis engineering units label char[16] | upper- and lower-case alpha,
numbers, spaces, and
A il
8 3340 internal to eng. units conversion factor {for y-axis labei) double ~1E100:1E+100, except 0
g 41 data valid {0=no, 1=yes) booi 01
10 42:43 reserved short 0
1 44 reference level tracking (O=off, 1=on) bool a1
12 45:60 internal units label {for y-axs per division) char[16] | V V2, Vrms, Vims ™ 2, dB,
deg, rad, V/rtHz,
Vrms/rtHz, V ~ 2/Hz,
Vrms~2/Hz, s
13 61.76 engineering units label {for y-axis per div.) char{16] | upper- and lower-case alpha,
numbers, spaces, and
_ , , met = NOBL)
14 77:84 internal to eng. units conversion factor (for y-axis per div.) double —1E+100:1E+ 100, except 0
18 85:92 per div. value for y-axis (in internal units) double {dependent on per div, units)
16 93108 Internal units label {for y-axis refersnce) char[16} 1 V. V™2 Vims, Vims~ 2, dB,
dBm, dBVpk, dBVrms,
deg, rad, V/riHz,
Vrms/riHz, V-~ 2/Hz,
Vrms ™ 2/Hz, dBVpl/Hz,
dBVrms/Hz, ¢Bm/Hz, 5
17 7 109:124 engineering units fabel {for y-axis ref.) charf{16] | upper- and lower-case alpha,
numbers, spaces, and
e =2 f AQIY
18 | 125132 internal to eng. units conversion factor (for y-axis ref.) double —~1E+106:1E+100, except 0
19 | 133:140 value for top of y-axls double {dependent on y-axis ref. units)
20 | 141148 value for center of y-axis double (dependent on y-axis ref. units)
21 148:156 value for bottom of y-axis double (dependent on y-axis ref, units)
- 157,256 padding (binary file only)

Table 4-9. Display State Record

Transferring Data

ASCH | Binary Meaning of Data/ Data Range/
index index Data Tipe Uniis
line 1 byte 1:4 RECORD TYPE long 234881024 (0E000000 when
converted to hexadecimal)
2 5.8 RECORD LENGTH: ASCH or Binary fong 9 lines or 128 bytes
3 912 TOTAL RECORD REFERENCE COUNT tong 3
4 1314 display format O = upper/iower e-short 0:3
1 = single
2 = front/back
3 = state display
5 15 frequency label blanking (O0=off, 1==0n) bool 0
6 18 display blanking (0=0ff, 1=0n) bool 0:1
7 17:18 # of the active trace short 1.2
8 19:22 RECORD REFERENCE: # of math records to follow long 1
9 23:26 RECORD REFERENCE: # of trace state records to follow long 2
- 27128 padding (binary file only)
Table 4-10. Expression Hecord
ASCH | Binary Meaning of Data/ Data Range/
Index index Data Typs Units
finet | bylet:4 RECORD TYPE long 268435456 (10000000 when
converted to hexadecimal)
2 5.8 RECORD LENGTH: ASClfor Binary tong 5 lines or 384 bytes
3 912 TOTAL RECORD REFERENCE COUNT fong 0
4 1314 # of the funetion (F1-F5) this record describes short 1.5
5 15.284 expression that defines the function cha:{270]) SPECH, SPEC2, PSD1, PSD2,
TIMET, TIME2, FRES, COH,
CSP F1:F5, K1:K5,
"<filename>', JOM,
CONJ, MAG, REAL,
IMAG, SQRT, FFT,
IFFT, and () +—*/
— | 285384 padding (binary file only}

4-21

Transferring Data

Table 4-11. File Header

ASCH Binary Meaning of Data/ Data Range/
Index index bata Type Units
fine 1 byte 1:2 system i shott]
2 34 file encoding 1281 =hinary e-short 1281, 1282
1282=ASCH
3 5.6 versien numbert (major part) short 0
4 78 version number {minor part) short i
& g12 file type 262144=trace file long 262144, 327680, 393216,
327680=instrument stafe file 4h8752 5242868
393216=math flle
458752 =Iimit table file
524288=data table file
§ 1316 RECORD LENGTH: ASCI or binary leng & lines or 128 bytes
- 17:128 padding (binary file only)
Table 4-12. Limit Table Record
ASGH Binary Meaning of Data/ Dafa Hange/
Index index Data Type Unifs
fine1 | byte 1:4 RECORD TYPE long 352321536 {15000000 when
converted to hexadecimal}
2 5:8 RECORD LENGTH: ASCllor Binary iong 13:10248 lines or
128:82048 bytes
3 212 TOTAL RECORD REFERERCE COUNT iong &
4 1314 # of the limit table this record describes short 1:8
& 15 offset y-axis entry state (0= off, 1==0n) bool G
8 18:18 offset y-axis entry value float (dependent on vertical units)
7 26:21 # of segments in the table short 1:802
8 2225 skip from record start o data start long 8lines or 25 bytes

Limit table data starts here. The data consists of a number of segraents that are directly adjacent to each other in the record. Each
segment is defined by five values. Segments are repeated n times to & maximum of 802 segments. A segment takes this form:

26
2730
31:34
35:38
39:42

upper or lower fimit (0=lower, T=upper)
X-axis start value

¥-axis stop value

y-axis start value

y-axis stop value

segments 2 through n

padding to multiple of 128 (binary file only)

bool
float
float
float
float

01

-320E+31120E+3 Hz or s
—120E+3120E+3 Hz or 5
{dependent on vertical units)
{dependent on verlical unis)

4-22

Tabie 4-13. Limit Table Reference Record

Transferring Data

ASCH Binary Meaning of Data/ Dala Range/
index index Data Type Units
finet | bytel:4 RECORD TYPE Jong 458752 {DOG70000 when
converted to hexadecimal)
2 5.8 RECORD LENGTH: ASCIt or Binary long 4 fines or 128 byles
3 %12 TOTAL RECORD REFERENCE COUNT long 0:8
4 13186 RECORD REFERENCE: # of limit table records to follow long o8
e 17:128 padding (binary file only)
Table 4-14. Marker State Record
ASCHI . Binary Meaning of Data/ Data Range/
Index index Data Type Units
line1 ¢ hytet:d RECORD TYPE fony 318767104 (13000600 when
converted to hexadecimal)
2 5:8 RECORD LENGTH: ASCH or Binary fong 6 lines or 128 bytes
3 9:12 TOTAL RECORD REFERENCE COUNT iong 4
4 1318 RECORD REFERENCE: # of trace-dependent marker long 2
records {o foliow
5 17:20 RECORD REFERENCE: # of limit table reference long 1
records to follow
8 21.24 RECORD REFERENCE: # of data table reference long 1
records to foliow
— 25:128 padding (binary file only)
Table 4-15. Master State Record
ASCH | Binary Meaning of Data/ Data | Range/
Index Index Data Type | Uniis
fine 1 byte 1.4 | RECORDTYPE fong | 327880 (00050000 when
converted ta hexadecimal)
2 5:8 RECORD LENGTH: ASCH or Binary fong G fines or 128 bytes
3 @12 TOTAL RECORD REFERENCE COUNT jong 4
4 13186 time stamp (sik-digit integer: hhmmss) fong 000000:235953
5 17.20 date stamp (six-digit integer; mmddyy) long 010100:1231839
] 21:24 RECORD REFERENCE: +# of measurement state records o follow | fong 1
7 25:28 RECORD REFERENCE. # of display state records 1o follow jong i
8 29:32 RECORD REFERENGE: # of system state records 1o follow iong 1
g 33:36 RECORD REFERENCE: +# of marker state records to follow long 1
- 37128 padding (binary file only)

4-23

Transferring Data

Table 4.16. Math Record

ASCH Binary Meaning of Data/ Data Range/
index ndex Data Tvpe Units
line1 ! byte 1:4 RECORD TYPE long 383216 {0GOG0000 when
converted to hexadecimal)
2 5:8 RECORD LENGTH: ASCIH or Binary long 14 lines or128 bytes
3 12 TOTAL RECORD REFERENCE COUNT long 0:5
4 1316 RECORD REFERENCE: # of expression records to follow fong 05
5 17:24 real part of constant K1 double —340.28E + 36:340.28E + 36
] 25:32 imaginary part of constant Ki double ~340,28E +36;340.28E+ 36
7 33:40 real part of constant K2 double ~340.28E+36:340.28E + 36
8 41:48 imaginary part of constant K2 doubie —340.28E+36:340.28E + 38
9 49:56 real part of constant K3 double —340.28E +36:340.28E+ 36
10 57:64 imaginary part of constant K3 double - 340.28E +36:340.28E + 35
1 65:72 real part of constant K4 double ~340.28E +36:340.28F + 36
12 73:80 imaginary part of constant K4 double —340.28E +36:340.28E+ 356
13 51:88 real part of constant K5 double —340.28E+36:340.28E + 38
14 89.96 imaginary part of constant K5 double - 340.28E+36:340.28E+ 35
- 97128 padding (binary fiie only)

424

Transferring Data

Tabie 417 . Measurement Header Record

ASCH | Binary Meaning of Data/ Data Range/
Index Index Data Tpe Units
fine 1 byte 1:4 RECORD TYPE leng 84017152 (05020000 when
converted fo hexadecimal)
2 5:8 RECORD LENGTH. ASCH or Binary long 27 lines or 128 bytes
3 812 TOTAL RECORDS REFERENCED long 0
4 1314 type of data O {not supported) e-short 0:18
1 = time
2 = spectrum
3 {not supported)
4 = frequency response
& = cross spectrum
6:9 {not supported)
10 = coherence
11:15 (not supported}
18 = power spectral density
17 = user math
18 = null
5 15:18 x-axis domain 1 = frequency e-short 1.3
2 = time
3 (ot supported)
6 17:18 zoom mode (0==baseband, =zeom}) short 01
7 19:26 center frequency double 0:115E+3 Hz
8 2734 frequency span double 195.3E-3:102.4E+ 3 Hz
9 35:42 starting frequency double —65.5E+3:115E+3 Hz or
time ~32.8E+3:8.19E+3 ¢
10 43:50 ending frequency double -85 5E+3115E+3 Hz or
time —32BE+3:8.19E+3 ¢
11 51:54 time record block size long 512, 1024
12 55:58 # of first point with valid data long 0:1024
13 59:62 # of last point with valid data long 0:1024
714 63:64 measurement mode 1 = Hnear resolution a-short 1.2
2 {not supported)
15 65:68 time stamp (six-digit integer: hhmmss) long 000000;23595%
16 89:72 date stamp (six-digit integer; mmddyy) long 019100,123199
17 73:74 averaging type 0 = RMS e-short 03
1 = vector
2 = peak hoid
3= off
18 7578 # of averages lang 1:995999
19 79:80 averaging state (O=off, 1==on) short 0:1
20 81:82 exponential averaging state (0=off, 1=on) short 0:1
21 8384 # of channels used for the measurement short 1.2
22 85:86 channel providing this vector's data O=not channel specific| short 0:2
1 = channel 1
2 = channel 2
23 87 frequency pair used (O=center/span, 1=stary/ston) bool 0:1
24 88 math overfiow during measursment {0=ng, 1=yes) bool o1
25 89 measurement cccurred In seal-time (O=ng, 1=yes) bool 0:1
26 90 data before FFT 0 = complex aletel] 0:1
1 = real
27 91.98 reference impedanese for dBm units double 1E-31E+7Q
- 98:128 padding {binary file only)

FThis field is ignored on recall,

4-25

Transfaerring Data

Tabie 4-18. Measurement State Record

ASCH Binary #eaning of Data/ Data Range/
index Index Data Type Unifs
line1 | byte 14 RECORD TYPE long 201326592 (0CO000C0 when
converted fo hexadecimal)
2 58 RECORD LENGTH: ASCIi or Binary long 33 lines or 256 bytes
3 9:12 TOTAL RECORD REFERENCE COUNT long 2
4 1314 # of channels in measurement short 12
5 15:22 center frequency double 0:115E+3 Hz
6 23:30 frequency span double 195.3E~3:102.4E+3 Hz
7 31:38 start frequency double {range dependent on span} Hz
8 38.46 stop frequency double {range dependent on span) Hz
9 47.54 increment for stepping frecuencies double 15.625E--3:51.2E+3 Hz
10 5562 time length of record double 3.90BE—3:2.048E+3 s
11 83 zoom mode (0=baseband, 1=200m) bool 0:1
12 64:65 active frequency pair (0=stary/stop, 1=center/span) e-short 01
13 66.67 irigger type: 0 = continuous e-short 0:6
1 = exiernal
2 {not supported)
3 = source
4 = internal, charnel 1
5 = internal, channel 2
6 = HP-IB
14 6875 trigger level (as a percentage of input range) double ~100:100 %
15 78 trigger slope (0= negative, 1=positive} bool 01
16 7 source cutput state {0=cff, 1=0n} boal 01
17 78.79 source output type; O (not supported} g-short 0:3
1 = fixed sine
2 = periodic chirp
3 = random noise
18 80:87 source levet for random noise output double 05V
19 88:95 source level for perfodic chirp output double GGRY
201 96:103 source level for sine wave output double o5V
21 1 104118 source level tabel char{18] | V. Vims, dBVpk, dBVims
22 1 120427 internal to eng. units conversion factor (for source level) double —~1E4+100:1E+ 100, except &
23 | 128:135 frequency of source sine wave double 0:115E+3 Hz
24 | 136:137 arming mode (G=automatic arming, 1=manual arming) e-short 0:1
25 138 averaging state (O=off, 1=on} bool 0:1
20 | 138140 averaging type 0 = RMS g-short 0:3
1 == vegtor
2 = peak hold
3 = off
27 1 141144 number of averages jong 198898
28 | 145146 exponential averaging state (C=off, 1==on) e-short 01
28 147 fast averaging state {O=off, 1=on} bool 0%
30 | 148:151 fast averaging update rate long 1:99909 -
31 | 152:158 time-record overlap per average (requested) double 0:0.99
32 | 160:167 reference impedance for ¢Bm calculations double E-FE+6 0
33 | 168171 RECORID REFERENCE: # of channel state records to follow | long b
— | 172:258 padding (binary file only)

4-26

Table 4-19. System State Hecord

Transferring Data

ASCH | Binary Meaning of Data/ Data Range/
Index index Data Type Uniis
ine ti byte 1:4 RECORD TYPE long 285212672 (11000000 when
converied fo hexadecimal)
2 5.8 RECORD LENGTH: ASCIl or Binary feng 21 fines of 128 bytes
3 g12 TOTAL RECORD REFERENCE COUNT fong 0
7 4 13:14 storage device 0 = no slorage e-short 0:3
1 = external dise (HP-[B)
2 = internal disc
3 = RAM disc
5 15 storage coding (O=ascil, 1 =binary} kool 01
6 16 auto-calibration state (B=off, 1=o0n) bool o1
7 17 calibraticr: trace display (0=off, 1=on) bool 01
8 18 beeper state (0=off, 1=0n) bool a1
§ 19:20 active piotter speed 0 = fast (36 cm/sec) e-short 0.2
1 = slow {5 cm/sec)
2 = user-defined
10 21.22 user plotter speed short 1:100 cm/sec
11 2324 grid pen number short 0.84
12 25.26 alpha pen number shart 0:64
F 13 27 system controfler state 0 = acddressable only
1 = gystem controlier boo! O
14 2829 HP 35660A's bus address short 0:30
15 03 external disc's bus address short o7
16 32:33 external disc’s unit number short 415
17 3435 external disc's volume number short &7
18 36:37 printer’s bus addrass short 0:30
19 38:39 plotter’s bus address short G:30
20 40 HP-1B status annunciators (O=off, 1=on) beol a1
21 41:42 mnemonic display state 1 == mnemonic echo e-short 1:3
2 = mnemonic scroll
3 = mnemonic display off
— 43:128 padding (binary file only)

This field is ignored on recall

4-27

Transferring Data

4-28

Table 4-20. Trace State Record (part 1)

ASCH | Binary Meaning of Data/ Data Range/
Index fndex Data Tvpe tnits
finet | byte 14 RECORD TYPE long 251658240 (OFO00000 when
converted to hexadecimal)
2 5.8 RECORD LENGTH: ASCH or Binary long 30 lines or 256 bytes
3 9:12 TOTAL RECORD REFERENCE COUNT fong 0
4 1314 # of the trace this record describes short ~1,-2,1,2
75 15 trace active {O==not active, 1==active} bool o
B 16:45 user-defined trace title charff30] | upper- and lower-case alpha,
numbers, spaces, and
et =N
7 46:47 type of coordinates 0 = Hnear magnitude e-short 0:6
1 = jogarithmic magnitude
2 = magnitude
3 = phase
4 = real
§ = imaginary
6 = group delay
8 48:49 type of data O (not supported) e-short 0:8
1 = time
2 = spectrum
3 = power speciral density
4 = frequency response
5 = coherence
6 = cross specirum
g 5051 channel providing this trace's data @ = not channel speeffic | e-short 0:2
1 = channef 1
2 = channel 2
10 52:53 # of active math function (O=no function active) short 0:5
11 54:55 # of active math constant (O=no function active) short 0:5
12 56.83 group delay aperture double 05,1,2
4,816 %
13 64 grid display (O=off, 1=0m) bool 0t
14 65:66 reserved short 0
15 87 reference level tracking (O0=o0ff, 1=on) bool 0:1
16 68:83 internal units label {for y-axis per division value) char[18] | V V™2, Vims, Vrms~ 2, ¢B,
deq, rad, V/rtHz,
Vrms/rtHz, V-~ 2/Hz,
Vims~2/Hz, s
17 84.99 engineering units label (for y-axis per div.) char[16} | upper and lower-case alpha,
numbers, spaces, and
mek = AT
18| 100:107 internal 1o eng. units conversion factor {for y-axis per div) double ~1E+100:1E+ 100, except &

1 This field is ignored on recall,

Transferring Data

Table 4-20. Trace State Record (part 2)

ASCH | Binary Meaning of Data/ Daia Range/
Index index Data Type Linits
ne 19 | 108115 per div. value for y-axis {in internal units) double {dependent on per div. units)
20 116:131% internal units labet (for y-axis reference values) charf16] | V V2 Vims, Vrms ™~ 2, dB,

dBm, dBvpk, dBVrms,
deg, rad, V/riHz,
Vrms/rtHz, V~ 2/Hz,
Vims ™~ 2/Hz, dBVpk/Hz,
dBVims/Hz, dBm/Hz, s

211 132:147 enginsering units label (for y-axis ref. vaiues) char{16] | upper- and lower-case alpha,
numbers, spaces, and

i AL

22 | 1481155 Internal 1o eng. units conversion factor {for v-axis ref. values) | double —1E+100:1E+ 100, except 0
23| 156:183 reference value for top of y-axis double {dependent on y-axis ref. units) -
24 | 184171 reference value for center of y-axis double {dependent on y-axis ref, unifs)
251 172179 reference value for bottom of y-axis double {dependent on y-axis ref. units)
26 | 180:181 reference last changed 0 = top g-short 02
1 = center
2 = bottom
27 182 X-axis scaling (8=1linear, 1==logarithmic) bool 01
25 1 183:184 pen number used to plot this trace short 0.64
291 185:188 line type used o plot this trace 0 = solid ¢-short 0:4
1 = dotted
2 = dashed

3 = user-defined

30| 187:188 user-defined line type shart 0:6, —4098
{The number’s meaning is plotter dependent.)
— | 189:256 padding (binary file only) -

4-29

Transferring Data

4-30

Tabie 4-21. Trace-dependent Marker Record

ASCH Binary Meaning of Data/ Data Range/
index Index Data Type Unils
finet | byte 1.4 RECORD TYPE long 335544320 (14000000 when
converted to hexadecimal)
2 58 RECORD LENGTH: ASCIFor Binary long 29 lines or 128 byles
3 812 TOTAL RECORD REFERENCE COUNT long 0
4 1314 # of the trace this record describes short 1:2
5 15 main marker state (O=off, 1=on) boel 0:1
6 16 marker coupling {G=off, 1=on) bool 0:1
7 1724 main marker's x-axis value double (within selected span) Hz or
(within selected time record) s
8 25 offset marker state (0=off, 1=on) bool 01
9 26:33 offset marker's x-axis value double 0:195E+3Hzors
10 3441 offset marker's y-axis vatlie double {dependent on vertical units)
11 42 peak acking (O=off, 1=0n) booj 0%
12 43:50 marker search target level double {dependent on vertical units)
13 §1.52 active special marker O = special markers off g-short &3
1 = harmonic marker
2 = band marker
3 = sideband marker
14 £3.60 fundamental frequency of harmonic marker double 0:115E+3 Hz
15 61 harmonic caiculation selected {O=harmonic power, 1=THD}; bool 01
16 62:63 nusnber of harmonics selected short 0:460
7 64 harmonic results display (J=off, 1=0n} boot 01
18 8572 carrier frequency for sideband marker double 0315843 Hz
18 73:80 incremental freguency beiween sidebands double 0:115E+3 Hz
20 81 sideband power calculation (0=off, 1=o0n) bool 0:1
21 82:83 number of sidebands short 0:200
22 849 lowest frequency of band marker doubie 0:115E+3 Hz
23 92:98 highest frequency of band marker deuble 0:115E+3 Hz
24 100 band power calculation {0=off, 1=0n) bool 0:1
25 | 101:102 # of active limit table short 18
26 103 limit lines {Q==off, 1==0n) boo! 0:1
27 104 limit test (0=o0f, 1=0n) bool 01
28 105 limit beeper {0=off, 1=0n) bool 01
23 108 calcUiate data table {0=0ff, 1=0n) bool 01
— | 107128 padding (binary fiie anly}

Table 4-22 . Vector Record

Transferring Dala

ASCH Binary Meaning of Data/ Data Range/
index Index Data Tipe Units
fine 1 byte 1.4 RECORD TYPE long 117571584 (07020000 when
converted to hexadecimal)
2 5.8 RECORD LENGTH: ASCH or Binary long 20:1641 lines or
384.8448 hytes
3 g12 TGTAL RECORDS REFERENCED long 0
4 13:14 # of points in the record short 512 if frequency data,
31024 if time dala
5 15:94 trace label char[80] | upper- and lower-case &lpha,
numbers, spaces, and
set=* L NOOE
76 85:96 # of x-axis values per point short 0
7 97.138 ¥-axis domain label char[40] | FREQUENCY, TIME
8 137152 x-axis unit label charf16] | Hz, s
9 153:160 x-2s start point double ~B5.5E+3115E4+3 Hz or
—32.8E+3:8.19E4+3 5
10 161:168 x-axis increment between points double 2.44E~3:256 Hz or
381E~6:4.0s
11 168170 # of y-axis values per point 1 when data is real short 12
2 when data is complex
712 171:210 y-axis domain label charf40] | REAL, COMPLEX
13 211.228 y-axis unit labet char[16) | VV~2 Vs, Vims~ 2, dB,
Not listed are the many special units that dBm, dBVpk, dBVrms,
can result from math operations or the deg, rad, V/rtHz,
application of engineering units. Howevet, Vims/rtHz, V ~ 2/Hz,
such units are valid here. Vrms~ 2/Hz, dBVpk/Hz,
dBVrms/Hz, dBm/Hz, s
F14 227234 y-axis start point double ¢
+15 235:242 y-axis ingrement between points double 0
16 242244 vector data format (for binary transfers) e-short 1.2
1=232-bit binary floating point (IEEE 754-1985)
2=64-bit binary floating point (JEEE 754-1985)
17 245:248 skip from record start to data start feng 17 lines or 248 bytes

Vector data starts here. The data consists of a number of points that are directly adjacent {0 each other in the record. Line 4 specifies
the number of points {n} in the record. Line 16 specifies whether points are made up of floats or doubles. Points can fake one of two
forms. if you are transferring real data, 4 point takes this form:

points 2 through n
padding to muttipte of 128 {binary file only)

18 249:252 y-axis value float —340E + 36:340E+ 36
or 249:256 double

- — points 2 through n

- - padding to multiple of 128 (binary file only)

if you are transferring complex data, a poirs takes this form:

18 248:252 y-axis value (real part) float —340E + 36:340E + 36
oF 248:256 double

18 253:256 y-axis valte {imaginary part} float —340E +36:340E+36
or 257264 double

FThis field is ignored on recall.

Using the HP 35660A's Status Registers

Chapter 5
y the HP 35660A’s
status Registers

Introduction

The HP 35660A’s status registers contain information about various analyzer conditions.
The controller can use one of two methods to access this information:

¢ The direct-read method -- reading the analyzer’s registers directly

¢ The SRQ method — using the analyzer’s service request (SRQ) process
In the direct-read method, the analyzer has a passive role. It only tells the controller that
conditions have changed when the controller asks the right question. In the SRQ method,
the analyzer takes a more active role. It tells the controller when there has been a
condition change without the controller asking. Either method allows you to monitor one or
more conditions,
When you monitor a condition with the direct-read method, you must:

1. Determine which register contains the bit that monitors the condition.

2. Send the unique HP-IB query that reads that register.
3. Examine the bit to see if the condition has changed.

The direct-read method works well if you do not need to know about changes the moment
they occur. It does not work well when you must know about condition changes immediately.
Your program would need to continuously read the registers at very short intervals. Since
this would make the program relatively inefficient, it would be better to use the SRQ method.

When you monitor a condition with the SRQ method, you must:
1. Determine which bit monitors the condition.
2. Determine how that bit reports to the request service (RQS) bit of the Status Byte.

3. Send HP-IB commands to enable the bit that monitors the condition and to enable
the summary bits that report the condition to the RQS bit.

4. Enable the controller to respond to service requests.

When the condition changes, the analyzer sets its RQS bit and the HP-IB’s SRQ line. Your
program determines how the controller responds to the SRQ, but the important point is this:
the controller is informed of the change as soon as it occurs. The time the controller would
otherwise have used to monitor the condition can now be used to perform other tasks.

5-1

Using the HP 35660A’s Status Registers

Register Reporting Structure

To use the SRQ method, you must understand how changes in analyzer conditions can result
in the HP-IB's SRQ line being set. This requires an understanding of the following items:

¢ The analyzer’s register reporting structure
= The types of registers used in a register set

* The commands and conditions that affect each of the analyzer’s register sets

This section discusses the register reporting structure. Subsequent sections diseuss the
other items.

Cots htegrity E
Regisier Set ‘

!
Dewice Starus | !
Ragisier Set 44

-, User Stotus
] Register Set j
Service E ¥ E
Regquest | T a5 1|
sRar | I
£ e . . | ,
: T b—e— 3 EI ¥
u : i i \ _
B | meg !
Service “ ®
Aequest ! l
; Process 3)
(| |
T " i —T— ¥ ¥
| ; i i Capiprs 0
I v o ; service Hecdest
! E ‘ ‘; - § - - o x * a Enatle Register
i I !
s | ‘ : g
i i
{ j I j

Figure 8-1 Register Reporting Structure
As shown in Figure 5-1, four register sets report to the Status Byte register. The Device
Status, Event Status, and User Status register sets all report directly to a particular bit in

the Status Byte. The Data Integrity register set reports indirectly to the Status Byte via bit
4 of the Device Status register set.

5-2

Using the HP 35660A’s Status Registers

When a register set causes a Status Byte bit to change from 0 to 1, the analyzer may initiate
its service request (SRQ) process. However, the process is only initiated if both of the
following conditions are true:

* The corresponding bit of the Service Request enable register is also set to 1

* The analyzer does not have a service request pending (A service request is
considered to be pending between the time the analyzer’s SRQ process is initiated
and the time the controller reads the Status Byte register with a serial poll)

The analyzer’s SRQ process sets the HP-IB’s SRQ line true and also sets the Status Byte’s
RQS bit to 1. Both actions are necessary to inform the controller the HP 35660A requires
service, Setting the SRQ line only informs the controller that some device on the bus
requires service. Setting the RQS bit allows the controller to determine that the HP 35660A,
in particular, requires service.

If your program enables the controller to detect and respond to service requests, it should
instruct the controller to perform a serial poll when the HP-IB’s SRQ line is set true. kach
device on the bus returns the contents of its Status Byte register in response to this poll.
The device whose RQS bit is set to 1 is the device that requested service.

NOTE When you read the analyzer's Status Byte with a serial poll, the RQS bit is
resetto 0. Other bits in the register are not affected.

As implied in Figure 5-1, bit 6 of the Status Byte register serves two functions. Two
different methods for reading the register allow you to access the two functions. Reading
the register with a serial poll allows you to access the bit’s RQS function. See the description
of bit 6 later in this chapter for information on accessing the bit’s MSS function.

5-3

Using the HP 35660A’s Status Registers

Types of Registers in a Set

The HP 35660A. uses four different types of registers in its register sets. The register
types are:

1. Condition register

2. Transition registers (one positive, one negative)
3. Event register

4. Enable register

information Flow in a Register Set

As shown in Figure 5-2, the information flow within a register set starts at the condition
register and ends at the register summary bit. You can control the flow of information
toward the register summary bit by specifying whieh bits are set in the transition and
enable registers.

Condiion ‘;’rar_uslfion Event Enabte
Register Registers = Register Register

~
Contineocusty monifors
condijinns

Hon changes
vent recister HY

5 fo report
ar summasy

» Actually and a negativa

Figure 5-2 Informaticn Flow in a Register Set

Using the HP 35680A’s Status Registers

The condition register and its two transition registers work together to report condition
changes to the event register. Each condition register bit directly monitors a particular
analyzer condition. The bit is set to 1 when the condition it monitors becomes true. The bit
is reset to 0 when the condition it monitors becomes false. When a condition bit changes
from 0 to 1, the change is only reported to the event register if the corresponding bit in the
positive transition register is set to 1. When a condition bit changes from 1 to G, the change
is only reported to the event register if the corresponding bit in the negative transition
register is set to 1.

The event register and its enable register work together to report latched condition changes
to the register summary bit. If an event register bit is reset to 0, the first condition change
reported to that bit causes it to be set to 1. Once set, an event bit is no longer affected by
condition changes. It remains set until you clear the register. The setting of an event bit is
only reported to the register summary bit if the corresponding enable register bit is set to 1.

The register summary bit is only set to 1 when one or more enabled event bits is set to one.
It is reset to 0 at all other times.

Special Cases

Two of the analyzer’s register sets (Event Status and User Status) only contain an event
register and an enable register. In these register sets, event and enable bits serve the same
function as in sets that contain all four register types. However, the rule for setting an event
bit is slightly modified. Each event bit is assigned to a particular analyzer condition. If the
event bit is reset to 0, the first positive transition of the condition (from false to true) causes
the event bit to be set to 1. Essentially, the event bit behaves as if a condition bit is reporting
to it through a positive transition bit.

One of the analyzer’s register sets (the Status Byte register set) contains only a condition
register and an enable register. The set consists of the Status Byte register and the Service
Request enable register. The Status Byte register is, with the exception of bit 6, a condition
register. This means that when the condition monitored by a particular bit is true, that bit is
set to 1. When the condition is false, the bit is reset to 0.

Bit 6 of the Status Byte register (when read by the *STB command) serves as the summary
bit for the other bits in the register. The Service Request enable register determines which
of these other bits will be included in the summary. A Status Byte bit is only included in the
summary if the corresponding bit in the Service Request enable register is set to 1.

5-5

Using the HP 35660A's Status Registers

The HP 35660A’s Register Sets

The HP 35660A uses five register sets to keep track of instrument status. The register
sets are:

1. The Data Integrity register set — monitors conditions that can effect the validity
of your measurement data

2. The Device Status register set — summarizes events in the Data Integrity register
set and monitors additional analyzer conditions

3. The User Status register set — detects STAT:USER:PULS commands and
key-presses of the instrument’s user SRQ softkeys

4. The Event Status register set — detects errors and monitors
synchronization conditions

5. The Status Byte register set — summarizes conditions in the other register
sets and monitors the analyzer’s output queue

The registers sets are summarized graphically in Figure 5-3. They are described in the
following sections.

5.6

LT _FA

TNCALIBRA

[RANGE

Lsing the HP 35660A's Status Registers

DEVHCE STATUS

LT OUVENRLT
EVENT STATUS

WER. TN

BT WEIGHTS

:
i
i
i
4

= hr oo

HEFR_STATUS_D

Figure 5-3 HP 35660A Register Summary

STATUS BYTE

w2l

EMAELT

Using the HP 35660A's Status Reglsters

Status Byte Register Set
The Status Byte register set contains:

° The Status Byte register (behaves like a condition register for all bits except bit 6)

e The Service Request enable register (for enabling and disabling all bits of the
Status Byte register except bit 6)

Power-up States

The state of the Status Byte register at power-up is variable,

The state of the Service Request enable register is saved in nonvolatile memory when you
send the SYST:SAVE command. It can be recalled at power-up, depending on the setting of
*PSC. If *PSC is 0, the register’s state is recalled. If *PSC is 1, all of the register’s bits are
reset to O.

Writing to the Registers

You can not write directly to the Status Byte register. Write to the Service Request enable
register using the *SRE command.

Heading the Registers

Read the Status Byte register either with the *STB query or with & serial poll. If you read
the register with the *STB query, bit 6 serves as the Master Summary Status (MSS) bit.
If you read the register with a serial poll, bit 6 serves as the request service (RQS) bit.
The other bits’ meanings are not affected by the method you use to read the register.

Read the Service Request enable register using the *SRE query.

Clearing the Registers

Clear the Status Byte register by simultaneously clearing all event registers. This is done by
sending the *CLS command. You must send the command immediately following a Program
Message Terminator (an ASCII line feed character or the HP-IB END message). This
ensures that the register’s MAV and MSS bits will be cleared. Clear the Service Request
enable register by sending *SRE with a value of 0.

Register Summary Bit

Bit 6 of the Status Byte register summarizes all other enabled bits in the Status Byte
register, but only if you read the register with the *STB query.

Definition of Biis

Bits 1, 2, and 3 of the Status Byte register set are not used. The other bits in the set are
defined in the following sections. Unless otherwise noted, the definitions describe bits in the
Status Byte register, not the corresponding bits of the Service Request enable register.

5-8

Using the HP 35660A’s Status Registers

User_Status_Event — bit 0

This bit summarizes all enabled bits of the User Status event register. The
User_Status_Event bit is set to 1 when one of the following occurs:

° A bit in the User Status event register changes from 0 to 1 while the corresponding
bit of the User Status enable register is set to 1

¢ A bit in the User Status enable register changes from 0 to 1 while the
corresponding bit of the User Status event register is set to 1

To keep the User_Status_Event bit set to 1, there must be at least one case where
corresponding bits of the User Status event register and User Status enable register are both
set to 1. When there are no such cases, the bit is reset to 0.

Message Avaliable (MAY) — bt 4

This bit indicates whether or not the analyzer’s output queue contains any response
messages. The bit is set to 1 when the output queue contains one or more messages. Itis
reset to 0 when the output queue is empty.

Event_Status (ESB) - bit 5

This bit summarizes all enabled bits of the Event Status register. The Event_Status bit is set
to 1 when one of the following oceurs:

° A bitin the Event Status register changes from 0 to 1 while the corresponding bit
of the Event Status enable register is set to 1

s A bit in the Event Status enable register changes from 0 to 1 while the
corresponding bit of the Event Status register is set to 1

To keep the Event_Status bit set to 1, there must be at least one case where corresponding
bits of the Event Status register and Event Status enable register are both set to 1. When
there are no such cases, the bit is reset to 0.

Request_Service (RQS} or Master_Summary_Status (MSS) — bit 6

This bit is unusual in that it provides different information depending on how the Status
Byte register is read. If you read the register with the *STB query, bit 6 summarizes all
other enabled bits in the Status Byte register. When bit 6 serves this function, it is known as
the Master Summary_Status (MSS) bit. The MSS bit is reset to 0 when either of the
following occurs:

* All enabled Status Byte bits are reset to 0

* All set Status Byte bits are disabled (corresponding bits of the Service Request
enable register are reset to 0)

59

Using the HP 35660A's Status Registers

If you read the Status Byte register with a serial poll, bit 6 tells you whether or not the
analyzer has requested service. When bit 6 serves this function, it is known as the
Request_Service (RQS) bit. The RQS bit is reset to 0 by the same things that reset the MSS
bit. But in addition, the RQS bit is reset when the Status Byte register is read by a serial
poll. The serial poll does not change the setting of any other bit in the register, not even the
MSS portion of bit 6.

Recause of the special function of the Status Byte register’s bit 6, the setting of the
corresponding bit in the Service Request enable register is ignored.

Device Status Event — bit 7

This bit summarizes all enabled bits of the Device Status event register. The
Device Status Event bit is set to 1 when the following occurs:

s A bit in the Device Status event register changes from 0 to 1 while the
corresponding bit of the Device Status enable register is set to 1

» A bit in the Device Status enable register changes from 0 to 1 while the
corresponding bit of the Device Status event register isset to 1

To keep the Device Status Event bit set to 1, there must be at least one case where
corresponding bits of the Device Status event register and Device Status enable register are
. both set to 1. When there are no such cases, the bit is reset to 0.

Event Status Register Set

The Event Status register set contains:

* The Event Status register (an event register)

¢ The Fvent Status enable register

Power-up Siates

Bit 7 of the Event Status register is set to one at power-up, All other bits of that register are
reset to 0.

The state of the Event Status enable register is saved in nonvolatile memory when you send
the SYST:SAVE command. It can be recalled at power-up, depending on the setting of *Pi5C.
If *PSC is 0, the register’s state is recalled. If *PSC is 1, all of the register’s bits are reset

to 0.

Writing to the Registers

You can not write to the Event Status register. Write to the Event Status enable register
using the *ESE command.

5-10

Using the HP 35660A's Status Hegisters

Reading the Registers

Read the Event Status register using the *ESR query. Read the Event Status enable register
using the *ESE query.

Clearing the Registers

Clear the Event Status register either by reading the register with the *ESR query or by
sending the *CLS command. Clear the Event Status enable register by sending *KESE with
a value of 0.

Register Summary Bit

Bit 5 of the Status Byte register summarizes all enabled bits of the Event Status register.

Definition of Bits

Bit 6 of the Event Status register set is not used. The other bits in the set are defined in the
following sections. Unless otherwise noted, the definitions describe bits in the Event Status
register, not the corresponding bits of the Event Status enable register.

Operation_Complete (OPC} --bit 0
This bit is only set to 1 after the following two events occur in the order listed:
1. You send the *OPC command to the analyzer.

2. The analyzer completes all pending overlapped commands. (For more information,
gee “Synchronization” in Chapter 2.)

Once set, the bit can only be reset to 0 by clearing the register.

NOTE INIT:STAT STAR and INIT:STAT RUN are considered to be pending overlapped
commands whenever bit 7 (Measuring) of the Device Status condition register is
setto 1. As aresuit, the setting of that bit can indirectly affect the setting of the
OPC bit. Ses the description of the Measuring bit to determine how it is set and
reset in different measurement situations.

Using the HP 35660A’s Status Registers

Request_Control (RQC) — bit 1
The analyzer sets this bit to 1 when both of the following are true:

* 'The analyzer is configured as an addressable-only HP-IB device (See “Controller
Capabilities” in Chapter 2.)

* The analyzer is instructed to do something (such as plotting or printing its display)
that requires it to take control of the bus

If the controller passes control to the analyzer more than ten seconds before or more than
five seconds after this bit is set, the analyzer automatically generates a device error and
passes control back. It passes control back to the address specified by the *PCB command.

Once set, the bit can only be reset to 0 by clearing the register.

Guery Error {(QYE) — bit 2

This bit is set to 1 when a query error occurs. See Appendix D for a list of conditions that
can cause query errors. Once set, the bit can only be reset to 0 by clearing the register.

Device_Error (DDE) — bit 3

This bit is set to 1 when a device-dependent error occurs. See Appendix D for a list of
conditions that can cause device-dependent errors. Once set, the bit can only be reset to 0 by
clearing the register.

Execution_Error (EXE) — bit 4

This bit is set to 1 when an execution error occurs. See Appendix D for a list of conditions
that can cause execution errors. Once set, the bit can only be reset to 0 by clearing
the register.

Command_Error (CME} — bit 5

This bit is set to 1 when a command error oceurs. See Appendix D for a list of conditions
that can cause command errors. Once set, the bit can only be reset to 0 by clearing

the register.

Power On (PON} — bit 7

This bit is set to 1 when you turn the analyzer on. Once set, the bit can only be reset to 0 by
clearing the register.

5-12

Using the HP 35860A’s Status Registers

Device Status Register Set

The Device Status register set contains:

* The Device Status condition register

¢ The Device Status positive transition register
» The Device Status negative transition register
* The Device Status event register

* The Device Status enable register

Power-up States

The state of the Device Status condition register is variable at power-up. All bits of all other
Device Status registers are reset to 0.

Writing to the Registers

You can not write to the Device Status condition register or to the Device Status event
register. Write to the other Device Status registers using the following commands:

¢ STAT:DEV:PTR (for the positive transition register)
¢ STAT:DEV:NTR (for the negative transition register)
* STAT:DEV:ENAB (for the enable register)

Reading the Registers
Read the Device Status registers with the following queries:

* STAT:DEV:COND? (for the condition register)
STAT:DEV:PTR? (for the positive transition register)
STAT:DEV:NTR? (for the negative transition register)
STAT:DEV:EVEN? (for the event register)
STAT:DEV:ENAB? (for the enable register)

L]

8

Clearing the Registers

You can not clear the Device Status condition register. Clear the event register either by
reading the register with the STAT:-DEV:EVEN query or by sending the *CLS command.
Clear the transition registers and the enable register by writing to them with a value of 0.

Register Summary Bit

Bit 7 of the Status Byte register summarizes all enabled bits of the Device Status
event register,

5-13

Using the HP 356604’s Status Registers

Definition of Bits

Bits 8 through 15 of the Device Status register set are not used. The other bits in the set are
defined in the following sections. Unless otherwise noted, the definitions describe bits of the
Device Status condition register.

Ranging — bit &

This bit is only set to 1 when the analyzer’s autoranging routine is enabled and is currently
changing the range of one or both input channels. The bit is reset £o 0 at all other times.
See the description of the INP:RANG:AUTO command for more information on autoranging.

Calibrating — bit 1

This bit is only set to 1 when the analyzer is calibrating. It is reset to 0 at all other times.
See the CAL:AUTO command for more information on calibration.

Rdy for Trig — bit 2

This bit is only set to one when the analyzer is ready to accept a trigger signal from one of
the trigger sources. It is reset to 0 at all other times. If a trigger signal is received before
this bit is set, the signal is ignored and the analyzer is not triggered. This bit is most ugeful
when you are using the HP-IB or the external trigger BNC as the trigger source. See
commands in the TRIGger subsystem for more information.

Rdy for Arsm - bit 3
This bit is only set to 1 when both of the following are true:
* Manual arming is turned on (ARM:SOUR HOLD)}
s The analyzer is waiting to be armed with the ARM:IMM command

The bit is reset to 0 at all other times. If you send ARM:IMM before this bit is set, the
commangd is ignored and the analyzer is not armed.

Data_Integrity — bit 4

This bit summarizes all enabled bits of the Data Integrity event register. The Data Integrity
bit is set to 1 when one of the following occurs:

* A Dbit in the Data Integrity event register changes from 0 to 1 while the
corresponding bit of the Data Integrity enable register is set to 1

= A bit in the Data Integrity enable register changes from 0 to 1 while the
corresponding bit of the Data Integrity event register is set to 1

To keep the Data_Integrity bit set to 1, there must be at least one case where corresponding
bits of the Data Integrity event register and Data Integrity enable register are both set to 1.
When there are no such cases, the bit is reset to 0.

5-14

Using the HP 35660A’s Status Hegisters

Settling — bit 5

This bit is only set to 1 when the analyzer is waiting for the digital filter to settle. It is reset
to 0 at all other times.

Applic Running — blt 6

This bit is only set to 1 when an application is running on the analyzer. It is reset to 0 at all
other times. If you are using HP Instrument BASIC, this bit is only set when a program
is running.

Measuring — bit7

NOTE INIT:STAT STAR and INIT:STAT RUN are considered pending overlapped
commands any time this bit is set to 1. They are considered complete each time
this bit changes from 110 0. See “Synchronization” in Chapter 2 for more
information on overlapped commands.

There are three sets of rules for setting and resetting this bit. There is one set of rules for
each of the following measurement situations:

1. Measurement data is unaveraged (AVER:STAT OFF).

2. Measurement data is rms or vector averaged with uniform weighting
(AVER:STAT ON, AVER:TYPE RMS or VECT, and AVER:WEIG STAB).

3. Measurement data is averaged with exponential weighting or using the peak hold

function (AVER:STAT ON, and AVER:WEIG EXP or AVER:TYPE PEAK).

In the first situation, the bit is set to 1 most of the time a measurement is running.
However, each time one or both of the displays are updated with the latest measurement
data, the bit is briefly reset to 0. Whenever the measurement is paused, the bit remains at 0
until you restart the measurement. You can pause the measurement by sending INIT:5TAT
PAUS or by pressing the analyzer’s Pause/Cont hardkey.

In the second situation, the bit is set to 1 whenever a measurement is running. The bit is
not briefly reset to 0 each time the displays are updated. It is only reset to 0 when the
measurement is paused. The analyzer automatically pauses the measurement when the
specified number of averages has been collected.

In the third situation, the bit is set to 1 until the first display update after the specified
number of averages has been taken. At that point, the bit is briefly reset to 0. Beyond that
point, the bit is set to 1 most of the time the measurement is running, but is briefly reset to 0
whenever a display is updated.

5-15

Using the HP 35660A's Status Registers

Data Integrity Register Set
The Data Integrity register set contains:
| ¢ The Data Integrity condition register

L]

The Data Integrity positive transition register

The Data Integrity negative transition register

The Data Integrity event register

&

The Data Integrity enable register

Power-up States

The state of the Data Integrity condition register is variable at power-up. All bits of all other
Data Integrity registers are reset to 0.

Writing to the Registers

You can not write to the Data Integrity condition register or to the Data Integrity event
register. Write to the other Device Status registers using the following commands:

» STAT:DINT:PTR (for the positive transition register)
» STAT:DINT:NTR (for the negative transition register)
¢ STAT:DINT:ENAB (for the enable register)

Reading the Registers
Read the Data Integrity registers with the following queries:

STAT:DINT:COND? (for the condition register)
STAT:DINT:PTR? (for the positive transition register)
STAT:DINT:NT?R (for the negative transition register)
STAT:DINT:EVEN? (for the event register)
STAT:DINT:ENAB? (for the enable register)

@

L

Clearing the Registers

You can not clear the Data Integrity condition register. Clear the event register either by
reading the register with the STAT:-DINT:EVEN query or by sending the *CLS command.
Clear the transition registers and the enable register by writing to them with a value of 0.

Register Summary Bit

Bit 4 of the Device Status condition register summarizes all enabled bits of the Data
Integrity event register.

5-16

Using the HP 35660A's Status Registers

Definition of Bils

Bits 1, 3 through 7, and 10 through 15 of the Data Integrity register set are not used.
The other bits in the set are defined in the following sections. Unless otherwise noted, the
definitions describe bits of the Data Integrity condition register.

Over_Range — bit 0

This bit is only set to 1 when the amplitude of a signal entering an input channel exceeds the
current range setting of that channel. The bit is set when this is true for either one or both
channels. It is reset to 0 at all other times.

NOTE When the analyzer is in the ¢cne-channel measurement mode (CONF.TYPE SPEC),
channel 2 does not set the Over_Range bit unlass the signal entering that channal
exceeds 27 dBVrms. This is because channel 2 is automatically set to its highest
range {27 dBVims) when the one-channel mode is selected.

Uncalibrated — bt 2

This bit is only set to 1 when there are no calibration constants available to correct the
measurement data. It is reset to 0 at all other times. Calibration constants are always
available unless one of the following is true:

¢ The analyzer has been unable to complete a calibration

* The analyzer has not been calibrated since the CLEAR CAL CONSTANTS softkey
was pressed

* The analyzer has not been calibrated since the CAL:CLE command was sent

Limit_Fail A — bit8

This bit is always reset to 0 when limit testing is turned off for display A. When limit testing
is turned on, the following rules determine when the bit is set and reset:

The bit is briefly reset to 0 each time measurement data is evaluated against the specified
limits. If the data passes the limit test, the bit remains at 0 until the next evaluation.
If the data fails the limit test, the bit is set to 1 until the next evaluation.

Measurement data is evaluated each time the display is updated (this oceurs even if display
blankingison).

Limit_Fail B — bit 9.

The rules for setting and resetting this bit are the same as the rules for setting Limit_Fail A,
except that this bit monitors limit tests on display B.

5-17

Using the HP 35660A's Status Registers

User Status Register Set

The User Status register set contains:

» The User Status event register
« The User Status enable register

Power-up States

All bits of the two User Status registers are reset to 0 at power-up.

Writing to the Registers

Write to the User Status event register using the USER:STAT:PULS command.
(Pressing one of the analyzer’s User SRQ softkeys also writes to the register.) Write to
the enable register using the STAT:USER:ENAB command.

Heading the Registers

Read the User Status event register using the STAT:USER:EVEN query. Read the User
Status enable register using the STAT:-USER:ENAB querv.

Ciearing the Registers

Clear the User Status event register either by reading the register with the
STAT-USER:EVEN query or by sending the *CLS command. Clear the User Status enable
register by sending STAT:USER:ENAB with a value of 0.

Register Summary Bit

Bit 0 of the Status Byte register summarizes all enabled bits of the User Status event register.

Definition of Bits

The bits in the User Status register set are User_Status_0 through User_Status_15. Bits 0
through 9 of the event register can be set either by pressing one of the analyzer’s User Status
softkeys or by sending a value with the STAT:USER:PULS command. Bits 10 through 15 of
the event register can only be set with the STAT:USER:PULS command. Once set, an event
register bit can only be reset to 0 by clearing the register.

Programming Exarnples

Chapter 6
Programming Examples

introduction

This chapter contains listings of 11 example programs stored on the HP 35660A Getting
Started disc. The listings, which are organized alphabetically by filename, demonstrate
many important programming concepts, including:

¢ Measurement synchronization
¢ Passing control
¢ Transferring data

* (enerating service requests (SRQs)

All of the programs were written in HP BASIC 5.0 for use on an HP Series 200 computer.
However, numerous coraments make it possible for you to adapt the programs to other
languages and computers.

6-1

Programming Examples

Example 1,

340

480
490
500
510
520
530
540
550
560
570
580
590
600
610
€20
630
640
650
660

IBASIC Program: DATATBL - Load and Read a Data Table
t

iThis program is divided into three parts. The first part
taccepts x-values for the data table from the keyboard. The
tsecond part sends the data table to the instrument. Part
ithree initiates a measurement, waits for the measurement to
lcomplete, and then reads and displays the x and y-values.
INOTE: Use HP35660A front panel Keys to view data table.

§

Scode=7 iinterface select code
2ddress=11 idddress for HP 356604
Dsa=Scode*100+Address

DIM Data tbl (1:20,1}) 120 % 2 data table aivay
INTEGER ¥,Y

%=0 i1X index for arvay (always = 0)
Y=1 1Yy index for array (always = 1)
1

ASSIGN @Dsa TO Dsa;FORMAT ON lUse for ASCILI data

ASSIGN @Dsa_off TO Dsa;FORMAT OFF |Use for binary data
i

CLEAR SCREEN '
OUTPUT @Dsa;"MARK: DTAB:HEAD:AFOR FP64" !Set up for binary transfers
!

Gaﬁ@rate_table: !Enter data from keyboard

INPUT "Number of points in table?",Num points
FOR I=1 TO Num points
DISP “Enter x-axis value for data point #%;I;
INFUT New point

Data tbl({I,X)=New point {save point into peoint array
PRINT I,New point IDisplay the new point
NEXT T
]
Send_table: iSend table to instrument. Only X values can be sent
{Buiid a header
Block count=Num points+8 'Number of bytes in data block
Byte count=LEN (VALS{Block_count}) INumber of digits in Block count
i
OUTPUT @Dsa;"MARK:A:DTABL: DATAY; !start sending the data

|First send the data block header
OUTPUT €Dsa USING "#,A,D,"&VALS(Byte count)&"D";"§%, Byte count, Block count
|

FOR I=1 TO Num points Istart sending the data block
OUTPUT @Dsa_off;Data tbl(1,X); OUTPUT each data peint
NEXT I
OUTPUT @Dsa;CHRS (10) toutput a LF character (EOL)
i
Read table: {Read and display the data table after a completed measurement

CLEAR SCREEN
DISP "sStarting the measurement...";

OUTPUT @Dsa;"MARK:A:DTAB:STAT ONY ITurn the calculation on

CUTPUT €Dsa;"INIT:STAT STAR;*WAL® 1Start the measurement

1

CUTPUT @Dsa;"MARK:A:DTABL:DATAZY iRead table after measurement done

ENTER @Dsa USING "#,A,D";AS,Byte count I[first byte of block header
ENTER @Dsa USING "#,"&VALS (Byte count)&"D";Block count

DISP "DONE"

i

PRINT TABXY(4,1):"X";TABXY (11,1} ;*RESULTS" ;TABXY (24,1} ;"Y"

FOR I=1 TO (Block count/8}/2 IFOR I=2 TO ‘Pairs of FP numbers’
ENTER @Dsa_off;Data thl(I,X),Data_tbl{(I,Y) IRead X, ¥
PRINT TAB({1):;Data_tbl(I,X);TAB(20) ;Data_tbl(I,Y) - IPRINT X,Y

NEXT I

ENTER @Dsa USING "A";AS tRead LF character at end of block

|

END

Programming Examples

Example 2.
10 ! BASIC Program: DUMPTRACE ~ Reading trace data
20 ! Read the coordinate transformed data from Trace A
30 t
40 Scodes7 linterface select code
50 Address=11 tAddress of HP 356604
60 Dea=Scode*100+Address
70 ASSIGN &€Dsa off TO Dsa;FORMAT OFF
80 CLEAR SCREEN
90 f
100 DIM Tracel(1:401) 1Most displays return 401 points
110 DIM Trace2(1:1024} {Time display can return 1024 points
120 DIM Rame$[80} iTrace title
130 INTEGER Byte countl iNumber of bytes in Block_count
140 INTEGER Block count INumber of bytes in data block
150 !
160 OUTPUT Dsa;¥DISP:HEAD:AVOR FP64% {Set txfer format to binary
170 OUTPUT Dsa;"DISP:A:DATATH {Request the display data block
180 !
190 ! Read the data block header. The header consists of a ‘#7 followed
200 ! by: a single digit ASCII number,a second ASCII number, the data block,
210 ! and a terminator. The single digit indicates how many bytes make up
220 ! the second number. ‘The second rumber indicates how many bytes are
230 { in the data block. For FP64 there are 8 bytes for every data point.
240 i Example (401 points): $#43208<3208 bytes><LF>
250 i
260 ENTER Dsa USING "%,A,D%;A$,Byte countl
270 ENTER Dsa USING "%, "&VAL$(Byte countl)&®D";Block count
280 Num points=Block count/8
290 SELECT Num_points !Select the right sized array
300 CASE 401
310 ENTER @Dsa_off;Tracel(*) Read the 3208 bytes into 401 points
320 Max val=MAX(Tracel(*}) 'Find the peak value
330 CASE 1024
340 ENTER @Dsa_off;Trace2(*) tRead the 8192 bytes into 1024 points
350 Max val=MAX(Trace2 (*)) 'Find the peak value
360 CASE ELSE
370 DISP "This program can‘t handle block sizes of%;Num points
380 CLEAR Dsa IClear unread data from HP35660A output buffer
180 GOTO End
400 END SELECT
410 !
420 ENTER Dsa USING "A";AS |Read termination character
430 PRINT "Successfully read *;Num points;"Data points®
440 !
450 OUTPUT Dsa;“DISP:A:HEAD:NAME?® !Read the Trace title
460 ENTER Dsa;Name$
470 CUTPUT Dsa;"DISP:A:HEAD: XOR?Y {Read the x-axis starting value
480 ENTER Dsa:;X start
490 OUTPUT Dsa;"DISP:A:HEAD:XINC?" !|Read the x~awxis increment/bin
500 ENTER Dsa;Xinc
510 OUTPUT Dsa;“DISP:A:HEAD:XUN?® !Read the x-axis units
520 ENTER Dsa;X units$
530 OUTPUT Dsa;"DISP:A:HEAD: YUN?" |Read the y-axis units
540 ENTER Dsa;Y_units$
550 X stop={Num points-1)*Xinc+X start I!Calculate the x-axis ending value
560 t
870 PRINT "Trace title is: ¥;:Name$
580 PRINT USING "K,6D.5D,X,K¥;"Start:",X start, FNStrip$(X_unitss$)
590 PRINT USING "K,6D.5D,X,K"*;"Stop :",X stop,FNStrip$(X_units$)
600 PRINT USING “K,X,6D.5D,X,K";"Maximum value is:" Max val,FNStrip$(Y units$)
610 End:LOCAY, Dsa {Return the 35660A to Iocal
620 END
630 DEF FNStrip$(AS) !Strip quotes from around string
640 RETURN AS${2,LEN(AS)=-1] IReturn all but first and last characters
650 FNEND :

6-3

FProgramming Examples

Example 3.
10 IBASIC Program: EXPAND - Read/Write complex trace data
20 !
30 IBesigned to demonstrate how to read and write a complex trace,
40 tthis program will read a trace, expand it around the current
50 imarker position and then send the trace back To the HP35660A.
60 iThe amount of expansion is selected using softkeys. To keep
70 ithe program as simple as possible, provisions for handling real
80 ltime data (1024 x 1 points) were not incorporated.
90 £
100 Zoom=0 tCurrent zoom factor, 9 indicates no valid data
110 Scode=7 !Interface select code
120 Address=11 {Address for HP 35660A
130 Dsa=Scode*100+Address
140 !
150 DIM Trace in(511,1) 'array for trace read 512x2 points
160 DIM Trace out(511,1) \array for expanded trace 401x2 points
170 i
180 ASSIGN @bDsa TO Dsa;FORMAT ON ‘Use for ASCII
190 ASSIGN éDsa off TO Dsa;FORMAT OFF {Use for binary
200 !

210 {Set up softkeys

220 XBD CMCDE ON

230 ON KEY O LABEL "READ TRACE" GOSUB Read trace

240 ON KEY 1 LABEL "RESTORE TRACEY GOSUB Restore trace
250 ON KEY 2 LABEL "ZOOM 2X¥ GOSUB Expand by two

260 ON KEY 3 LABEL "Z0OM ?X" GOSUB Expand by arb

270 ON KEY 4 ILABEL "AUTO SCALEY GOSUB Auto _scale

280 FOR I=5 TO 9 iCilear unused softkeys
290 ON KEY I LABEL "* GOTO Wait

300 NEXT T

310 !

320 Wait:LOOP IWait here for key press
330 END LOOP

340 |

350 Read trace: iSubroutine to read a 512 x 2 point trace

360 DISP "Reading trace data..."
370 INTEGER Byte_ count,Block count

380 QUTPUT @Dsa;*TRAC:HEAD:AFOR FPé4% l8et data transfer to binary
380 OUTPUT €Dsa;"TRAC:DATATH {Request data

400 ENTER @Dsa USING "%,A,D'":A$,Byte count !Read block header

410 ENTER @Dsa USING "%,"&VALS (Byte count)&"D";Block count

420 ENTER @Dsa_off;Trace_in{*) 1Read the data block

430 ENTER €Dsa USING "A":AS$ IRead LF character

440 f

450 OUTPUT @Dsa; "TRAC:HEAD:XOR?Y iRead x-axis origin

460 ENTER @Dsa;X_origin

470 OUTPUT @Dsa;"TRAC:HEAD:XINC? 'Read w»-axis increment/bin
480 ENTER @Dsa;X_incr

4890 OUTPUT @Dsa;"TRAC:HEAD:XUN? IRead x~axis units

500 ENTER @Dsa;Xunits

510 OUTPUT @Dsa;"TRAC:HEAD:YPOTY IRead v-points/bin

520 ENTER @Dsa;Ypo

530 IF Ypo=2 THEN {Check for complex data

540 Zoom=1 1Allow zooming, current zoom=1l
550 CUTPUT €Dsa;"MARK:A:STAT ON¥ |Make sure marker is on

560 DISP "Move marker to center of ewpansion before zooming.™

570 EISE

580 BEEP

590 Zoon=0

600 DISP "Can’t expand real time data -~ only complex."

610 END IF

620 1OCAL Dsa iReturn the analyzer to LOCAL
630 RETURN

640 !

650 Restore trace: [RESTORE TRACE softkey pressed. Send original trace back
6-4 660 IF Zoow=0 THEN GOTO No_data !No valid data, abort

Example 3 {continued.)

Programming Examples

670 Zooms=1 INew zoom value

680 GOTO Do it Do the zoom

690 !

700 Expand by two: 1700M 2X softkey pressed. Change zoom by two.
710 IF Zoom=0 THEN GOTO Ho_data iNo valid data, abort
720 Zoom=2*700m iNew zoom value

730 GOTO Dc it iDo the zoom

740 !

750 Expand by arb:
760 IF Zoom=0 THEN GOTO No_data

1Z00M ?X softkey was pressed, enter zoom value
INo valid data, abort

770 !
780 REPEAT
790 INFUT "Enter zoom factor: ",Zoom entry

800 UNTIL Zoom_entry>0

810 Zoow=Zoom_entry*Zoom

820 GOTO Do_it

830 H

840 Do_it:

850 IF Zoom<>1 THEN GOSUB Expand
860 GOSUB Read out

870 IoCcal, Dsa

880 RETURN

890 i

900 No_data:BEEP

510 DISP "READ TRACE first®

920 RETURN

930 !

940 Auto _scale: isend an auto-scale instruction to the analyzer
950 OUTPUT @Dsa; "DISP:A: SCAL:AUTO: SINGY

960 i0CATL, Dsa

970 RETURN

980 !

990 Expand: !

1000 INTEGER J,Index in,Index out,T

1010 |

1020 DISP YExpanding Trace ..."

1030 OUTPUT @Dsa;"MARE:X?Y

1040 ENTER &€Dsa;Marker X

1050 iCalculate bin number for unzoomed trace
1060 Marker bin=(Marker x-X¥ origin)/X incr
1070 !}

1080 I=0

1090 IF Xunit$[2,21="S" THEN

1100 Top bin=511

1110 Center bin=256

1120 ELSE

1130 Top bin=400

11490 Center bin=200

1150 END TIF

1160 Index out=Center bin !gtart in the middle of Trace out()
1170 WHILE Index out<“Top bin 'and work up to the top

1180 Index_in=Marker bint+ (I DIV Zoom) Icalculate which bin to get data from
1190 IF Index in<=Top bin THEN !Use data from Trace_in{()

IDon’t allow negative numbers
INew zoom=entry*current zoom
Do the zoom

Do the zoom

tCalculate new trace

ISend new trace to analyzer
'Return the analyzer to LOCAL
'Return from ON KEY

'Haven’t got valid data yet

1Return from ON KEY

I'Return from ON KEY

fRead marker fregquency

ICheck for time trace (units=Seconds)
Use all 512 points of time trace

Use first 401 points of freq trace

1200 Trace out{Index_ out,0)=Trace in(Index_in, 0} IReal part

1210 Trace out(Index out,l)=Trace in(Index_in,1) ! Tmaginary part
1220 EILSE IRan out of data, use 0

1230 Trace out{Index out,0)=0 !Real Part

1240 Trace cut(Index out,1)=0 !Imaginary Part

1250 END IF

1260 Index out=Index_out+l !Next bin up

1270 Y=I+1

1280 END WHILE

1290 I=0

1300 Index out=Center bin-1
1310 WHILE Index out>=0
1320 Index in=Marker bin-(I DIV Zoom}-1 6-5

IStart at middle-1 and work down

Programming Exarnples

Example 3 {(continued)

6-6

1330
1340
1350
1360
1370
1330
1390
1400
1410
1420
1430
1440
14E0
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1566
1570
1580
1590
1600
1610
le20
1630
1640
1650
1660

IF Index in>=0 THEN !Use data from Trace in{)
Trace cut({Index out,0)=Trace in(Index in,0) !Real part
Trace out(Index out,l)=Trace in(Index in,1) !Tmaginary part

ELSE {Ran out of data, use 0

Trace out(Index out,0)}=0
Trace out(Index out,l1)=0
END IF
Index out=Index out-1 {Next bin down
I=I+41
END WHILE
RETURN IReturn to Do_it
!
Read out: !Subroutine to send trace data back to the analyzer
DISP *Currvent zoom factor = ";Zoom {Show the current zoom
I
IF Zoom=1l THEN iRestore original x-axis scale
OUTPUT €Dsa;™TRAC:HEAD:XOR ¥;X origin !8et x~axis origin
QUTPUT @Dsa;“TRAC:HEAD:XINC ";X incr !Set x-axis increment/bin
ELSE !Set new x-axis scale

OUTPUT @Dsa;™TRAC:HEAD:XOR " ;Marker x-Center bin*X_incr/Zoom
OUTPUT @Dsa;"TRACIHEAD:XINC ¥;¥ incr/Zoom

END IF

OUTPUT €Dsa; "TRAC:HEAD:YPO ";Ypo !Set y-points/bin
1

CUTPUT @Dsa; "TRAC:DATAM; 'Data‘s on its way

IF Zoow=1 THEN 1Send the original data back

OUTPUT @Dsa USING "#,A,D,4D";"4% . 4,512%2%8 !Send a header “#48192°
OUTPUT @Dsa_off;Trace in{*),CHRS(10)
ELSE !1Send the expanded data back

OUTPUT @Dsa USING "#,A,D,4D";"#%,4,512+%2%8 !Send a header ’#481927
OUTPUT @Dsa_off;Trace out(#*),CHRS(10)

END IF

RETURN

Prog_end:END

Programming Examples

Example 4.
10 !BASIC Program: LIMITTBL ~ Downloading a limit table
20 !
30 IThis program creates a new limit table from information stored
49 !in DATA statements and downloads that table into the HP 356604
50 !
&0 Scode=7 !Interface select code
70 Address=11 ‘address for HP 356604
80 Dsa=Scode*100+Address
50 ASSTGN @bsa TO Dsa;FORMAT ON tise this YO path for ASCIT data
100 ASSIGN @Dsa_off TO Dsa;FORMAT OFF fUse this IO path for binary data
110 !
i20 DISP "Presetting the HP33660A...Y%
130 OUTPUT @Dsa;T«RSTH {Preset the HP35660A
140 OUTPUT 8Dsa;¥DISP:A:SCAL:STOP =51 DBVRMSY iSet display scale
150 OQUTPUT @Dsa;“DISP:A:SCAL:DIV 10 DB;*0PC?Y
160 ENTER @Dsa;0pc {Wait here until setup complete
170 !
180 DIM Table(l:20,1:5}) 120 segments, 5 pts/seqg
180 OUTPUT @Dsa;"LIMIT1:TABL:HEAD:AFOR FP64% !Set up for binary transfer
200 $
210 DISP "Generating limit table...®;
220 IFirst number in DATA is the number of segments defined
230 READ Segment count
240 f
250 FOR I=1 TO Segment count !Read data for each segment
260 FOR J=1 TC 5 IRead all five segment parameters
270 READ Table (I,J)
280 NEXT J
290 NEXT I
300 !
310 Output _table: 1Send the data in Table() to the 3566CA as LIM1
320 Block count=Segment count*5%8 '8 bytes/number, 5 numbers/seg
330 Byte count=LEN(VAL$(Block count)) Number of digits in Block count
340 !
350 OUTPUT @Dsa;"LIM1:TABL:DATAY; !Tell HP35660A that data is coming
360 !Send the data header "#<byte count><block count>%
370 OUTPUT @Dsa USING "#,A,D,"&VALS (Byte count)&"D";"#", Byte_ count,Block count
380 !
390 FOR I=1 T0O Segment count
400 FOR J=1 TO 5
410 CUTPUT @Dsa off;Table(I,J); !Send data in 64 bit floating point format
420 NEXT J
430 NEXT I
440 OUTPUT @Dsa;CHRS(10) 'OUTPUT a LF character to end block
450 OUTPUT 8Dsa;"DISP:A:LIM 1% !Asscciate table 1 with trace A
460 OUTPUT @Dsa;"DISP:A:LIM:LINE ON' !Turn the limit lines on
470 DISP "DONE"
480 sSTOP
490 !
500 IDATA for Limit lines
510 !Total number of segments in table
520 DATA 6
530 !
540 !The data (one segment per line) is arranged as:
550 ! DATA x-start, x-stop, y-start, y-stop, y-flag
560 INOTE: Values assume units for trace A (e.g. Hz and dBVrnms)
570 DATA 11000, 13600, -100, —-60, O
580 DATA 12300, 21300, =80, =80, 0
590 DATA 20000, 22600, -100,-60, 0
600 DATA 30000, 32600, =100, —-60, O
610 DATA 25800, 34200, -100, -~100, O
620 DATA 28400, 36800, -&0,-60, O
630 END

6-7

Programming Examples

Example 5.

290

320
330
340
350
360
370
380
390
400
410
420
430
440

I{BASTIC program: MEAS SYNC ~ Measurement synchronization
§

{This program demonstrates how to use the MEASURING bit in
{the DEVICE STATUS register to interrupt a program when a
Imeasurement is complete. The program will read and display
Ithe marker value with every trace update.

i

Scode=7

Address=11
Dsa=Scode*100+Address

i

DISP "Presetting the HP3IBG60A...
QUTPUT Dsa;¥*RST: *QpC?™

ENTER Dsa;0pc

OUTPUT Dsa;“SWE:TIME 2%

CUTPUT Dsa:"AVER ONY

{Interface select code
tAddress for HP 35660A

!Preset the HP35660A

'Wait here until preset complete
!Set record length to 2 seconds
!Turn averaging on

CUTPUT Dsa;"AVER:TYPE RMS;WEIG EXP" [Set averaging type to EXPON

QUTPUT Dea;WAVER:COUN 27
1

OUTPUT Dsa ;' "*CLSY

CUTPUT Dsa:%STAT:DEV:NTR 128%
CUTPUT Dsa ;"STAT:DEV:ENAB 1289
OUTPUT Dsa;"*SRE 128"

1Set number of averages

iClear STATUS BYTE register

{Program DEVICE STATUS NTR register
!Program DEVICE STATUS ENAB register
{Program STATUS BYTE ENAB register

ON INTR Scode,2 GOSUB Srg handler Iset up interrupt branching

ENABLE INTR Scode;?2
i

OUTPUT Dsa;%INIT:5TAT STARY

fAllow interrupt on SRQ

1Start the neasurement

DISP "Waiting for first measurement to complete...®

Idle:
GOTO Idle
1

Srq handler: IGot an SRQ
Stb=SPOLL(Dsa)
OQUTPUT Dsa;"STAT: DEV:EVENTY
ENTER Dsa;Dse
!

QUTPUT Dsa; "MARK:A:AMPLTV
ENTER Dsa;Mark ampl

!Wait here for interrupt

!'Read STATUS BYTE and clear SRQ
'Read and clear DEVICE STATUS EVENT reg.

!Read the marker amplitude

DISP "Marker amplitude: ";Mark ampl
|

ENABLE INTR Scode

RETURN
i

END

IRe—~enable the interrupts

Example 6.

10

70
180
180
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

Programming Examples

IHP-1B program: OPC SYNC ~ Measurement synchronization
i
IThis program demonstrates the how to use the *OPC command to
lallow an SR to interrupt program execution. *0PC will set
Ithe OPERATIONTCOMPLETE bit in the EVENT STATUS register
iwhen all pending HP-1IB commands have finished. With the proper
Iregister masks, this will generate a service request,
1
Scode=7 lInterface select code
Address~=11 taddress for HP 35660A
Dea=8code*100+Address
§
OUTPUT Dsa; SWE:TIME 8% {Set record length to 8 seconds
QUTPUT Dsa;"+*CLSY {Clear the STATUS BYTE register
QUTPUT Dsa;H"*ESE 1% {Program the EVENT STATUS ENABLE reg.
OUTPUT Dsa;"*SRE 32% {Program the STATUS BYTE ENABLE req.
£
ON INTR Scode,2? GOTO Srg handler I1Set up interrupt branching
ENABLE INTR Scode;z 1Allow SRQ to generate an interrupt
|
OUTPUT Dea;"INIT:STAT STARY iStart the measurement
OUTPUT Dsa;®*0OPpChH 1Generate SRQ when all commands have
ifinished.
Start time=TIMEDATE
100P Do something useful while waiting
BISP USING "14A, 2D.DY;%Elapsed Time :“,TEMEDATE*StartWtime
WAIT .1
END 100P
!
Srg_handler: [Got an SRQ
Stb=SPOLL{Dsa) lRead STATUS BYTE and clear SRQ
BEEP
OUTPUT bsa;"*ESR?Y Read and clear EVENT STATUS req.
ENTER Dsa;Esy
DISP "Got the SRQ! SPOLL returns:";Sth;¥ ESR returns:";Esr
END

6-9

Programming Examples

Example 7.
10 !BASIC program: OPCQ SYNC -~ Measurement synchronization
20 f
30 ! This program demcnstrates how to use the *OPC? HP-IB command
40 ! to hang the bus on a query before continuing on with the
50 ! BASIC program. After all pending HP-IB commands have finished,
60 ! the HP35660A will return a *1f in response to *0PC?.
70 !

80 Scode=7
90 Dsa=Scode*100+11
1

100 i

110 DISP "Presetting the HP35660A...%

120 OUTPUT Dsa;W+RSTH Preset the HP35660A

130 OUTPUT Dsa;"*0pC?® tPause on ENTER statement until
140 ENTER Dsa;Opc t7#RSTY command has finished
150 !

160 OUTPUT Dsa;"SWE:TIME 8% iSet record length to 8 seconds
170 DISP "Measurement started ..."

180 OUTPUT Dsa;"INIT:STAT STARY IStart the measurement

190 OUTPUT Dsa;"*0pC?™ !Pause until all pending HP-IB commands
200 ENTER Dsa;Opc lhave finished.

210 BEEP

220 DISP "Measurement done®

230 END

6-10

Programming Examples

Example 8.
10 ! BASTIC Program: PASSCNTL - Passing control to HP3I5660A
20 !
30 ! This program instructs the HP35660A perform a screen dump to a
40 ! printer and generate a service reguest when done. Control is
50 ! passed to the HP35660A when the print command is issued and
60 ! automatically passed back when the instrument no longer needs it.
70 !
80 Scode=7 !Interface select code
90 Address=11 !Address for HP35660A
100 Dsa=Scode*100+Address
110 OUTPUT Dsa;"*CLSY tClear the STATUS BYTE register
120 !
130 ! Program the instrument to generate SR(on OPERATION COMPLETE. This
140 ! requires programming the STATUS BYTE and EVENT STATUS enable regs.
150 OUTPUT Dsa;®+ESE 1" !Bit 1 = OPERATION COMPLETE
160 OUTPUT Dsa;"*SRE 329 !Bit 5 = EVENT STATUS
170 OUTPUT Dsa;¥"GPIB:LEDS ON" !Tarn on HP~IB status 1LED's
180 OQUTPUT Dsa;"*pPCB 21" !set up Pass control back address
190 !
200 ON INTR Scode GOTO Srg handler iSet up interrupt branching
210 ENABIE INTR Scode;2 {Enable interrupt on SRQ
220 H
230 DISP "HP35660A Printing screen..."
240 OUTPUT Dsa;"PRIN:DUMP:SCR" !Instruct analyzer to print the screen
250 OUTPUT Dsa;"*QpCH !Set OPC bit when everythings complete
260 PASS CONTROL Dsa 'Give control of the bus to the 356604
270 !
280 Wait _here: tWait for OPC to generate an interrupt
280 GOTO Wait here
300 !
310 Srg handler: IIf there’s an interrupt, then
320 IControl was passed back
330 IF BINAND(SPOLL(Dsa),64) THEN IHP35660A is requesting service
340 BEEP
350 DISP "HP35660A Done Printing®
360 ELSE !Tt wasn’t the HP35660A
370 DISP "UNKNOWN SRQ™
380 END IF
390 END

6-11

Programming Examples

Example 9,
10 ! HP~IB Program: USERSRQ -~ Responding to USER SRQ‘'s
20 !
30 ! This program demonstrates how user generated service
40 ! requests can be used to interrupt a program.
50 !
60 Scode=7 ITnterface select code
70 Address=11 {address of HP35660A
80 Dea=Scode*100+address
30 INTEGER User status_reg 116 bit integer
3100 !
1190 OUTPUT Dsa ' #CLSH iClear the STATUS BYTE register
120 i
130 ISet USER STATUS ENABLE register to all 1°s.
140 QUTPUT Dsa;"STAT:USER:ERAB 65535% [65535 = 1+42+4+48+....+2715
150 !

160 ISet STATUS BYTE ENABLE register for SRQ on USER STATUS EVENT only
170 OUTPUT bsa;"*SRE 1%

180 LOCAL Dsa 1Put the instrument in LOCAL mode
180 f

200 IInstrument is set up; Enable interrupts to detect an SRQ

210 ON INTR Scode GOSUB Srg handler ISet up interrupt branching

220 ENABLE INTR Scode;?2 {Enable interrzupt on SRQ

230 !

240 CLEAR SCREEN !Clear the text

250 Wait:DISP “On the HP35660A, Press {Local HP~IB} <USER SR> <SROx>™
260 GOTO Wait IWait for SRQ to occur

270 !

280 S5rqg_handler: !

290 IF BINAND(SPOLL(Dsa),64) THEN IBit 6 set, HP3B660A needs service
300 BEEP

310 OUTPUT Dsa;"STAT :USER: EVEN?Y IRead USER STATUS EVENT register
3ac ENTER Dsa;User status reg

336 i

340 { Check all 16 bits in the USER STATUS EVENT register

350 { Note: Bits 10-15 can only be set via HP-IB

360 FOR Usrg number=0 TO 15

3706 IF BIT(User status_reyg,Usrg number) THEN

380 SELECT Usrg _number

390 CASE O

400 GOSUB Service usrq0 1Gosub service routine for USER SRQ 0
410 CASE 1

420 GOSUB Service usrql !Gosub service routine for USER SRQ 1
430 CASE 2 TO 1%

440 GOSUB Service usrgx IGoto service routine for other USER SRQ’s
450 END SELECT

460 END IF

470 NEXT Usrg number

480 ENABLE INTR Scode IRe~enable interrupts

490 IOCAL Dsa 'Put the HP35660A in local mode

500 ELSE

510 BEEP

520 DISP "UNKNOWN INTERRUPTY !Tnterrupt wasn‘t from HP35660A,

530 STQP !Stop the program.

540 END IF
550 RETURN

560 Service usrqgO: !sService routine to handle USER SRQ O
570 PRINT "User pressed SRQ 07

580 RETURN

590 Service usrgl: 1Service routine toc handle USER SRQ 1

600 PRINT "User pressed SRQ 1Y

610 RETURN

620 Service usrgx: IService routine to handle other USER SRQ‘s
630 PRINT "USER SRQ was between 2 and 15Y

640 RETURN

650 ERD
6-12

Programming Exampies

Example 10.
10 !BASIC program: WAI SYNC ~ Measurement synchronization
20 !
30 !This program demonstrates how to use the *WAI command to
40 'prevent execution of an HP~IB command until all previous
50 ‘commands have finished. In this example, the trace display
60 'will not change to the UPPER/LOWER FORMAT until after the
70 !measurement has finished.
80 !
a0 !'The *WAI command does not affect program operation. The
160 Iprogram will run to completion, sending all of the commands to
110 'to the HP35660A without waiting for them to be executed.
120 !
130 Scode=7 tInterface select code
140 Address=11 tHP-IB address for HP 35660A
150 Dsa=Scode*100+Address
160 !
170 DISP "Sending HP-IB commands...”
180 OUTPUT Dsa;"SCR:FORM SINGY ISet display format to SINGLE.
10 OUTPUT Dsa;"SWE:TIME 8% {Set record length toc 8 seconds
200 QUTPUT Dsa;"INIT:STAT STARY i8tart the measurement
210 OUTPUT Dsa;®*WAIY iTell analyzer to walt here until
220 tall HP-IB commands have finished
230 OUTPUT Dsa;"SCR:FORM ULOW® 'Ge to upper/lower after waiting
240 BEEFP
2%0 DISP "Finished. Display will go to UPPER/LOWER when measurement done®
260 END

6-13

Programming Examples

Exampie i1.
10 {BASTIC Program: WINDOW -- Program for user defined windows
20 !
30 iThis program demonstrates how to use waveform math to implement
40 luser defined windows. Before running the program, set the start
50 ifrequency and span for the measurement. The window will be complex
60 {for zoomed measurements and real for baseband measurements.
70 i
80 Scode=7 {Interface select code
30 Dsa=100%Scode+1l {HP35660A at address 11
100 DIM Window{1023) 11024 pt array for window
110 H
120 ASEIGN 8Dsa_off TO Dsa;FORMAT OFF !10 path for binary data
130 i
140 OUTPUT Dsa;"USER:EXPR F1, (TIME1l/TIME1l)" 'befine a unitless time trace
150 OUTPUT Dsa;"TRAC:A:RES F1% !Set trace A to Math F1
160 OUTPUT Dsa ;™ TRAC:HEAD: XOR?Y
170 ENTER Dsa:Xor Read the start time
180 OUTPUT Dsa;"TRAC:HEAD: XINC?¥
190 ENTER Dsa;Xinc {Read the time interval
200 OUTPUT Dsa;"TRAC:HEAD: YPO?Y {Read Y points/bin
210 ENTER Dsa;¥po {pata is complex if Ypo=2
220 i
230 Gen window(Window(*) ,Ypo) IBuild the window function
240 ¢
256 DISP "Writing window to trace A..."
260 OUTPUT Dsa;"TRAC:HEAD:XOR *;Xor iDefine the start time
270 OUTPUT Dsa;"TRAC:HEAD:XINC ":Xinc iDefine the time interval
28¢ OUTPUT Dsa;"TRAC:HEAD:YPO ¥;:¥po 11 or 2 Y points/point
290 OUTPUT Dsa;"™TRAC:DATAY; !Put window data into trace A
300 OUTPFUT Dsa USING "#,A,D,4D%;"#Y, 4,1024%8 1Send a header ‘#464167
310 OUTPUT €Dsa off;Window({*),CHRS (10) 1Send data and block terminator
320 i
330 OUTPUT Dsa:"DISP:A:AXIS REALY iDisplay the real part
340 OUTPUT Dsa;"DISP:A:SCAL:AUTO:SING" Auntoscale the display

350 DISP "Saving the window in ‘RAM:HANNING...%

360 OUTPUT Dsa; "MMEM:STOR:TRAC:A ‘RAM:HANNING’ ;#0PC?% !Save the window
370 ENTER Dsa;Opc Wait for save to finish
380 i

390 {Use the window to do z spectrum measurement. Keep TIME]L first in
400 !the math expression for correct x-axis start/stop values.

410 OUTEUT Dsa;"USERIEXPR F1, (FFTI(TIME1+/RAM:HANNING’))" !Define math F1

420 OUTPFUT Dsa;"TRAC:A:RES Fi® i{Set trace A to Math F1
430 DISP "Starting the measurement...®

440 OUTPUT Dsa;"INIT:STAT STAR" {Start the measurement

450 OUTPUT Dsa;"DISP:A:AXIS LOGM;*WAI; :DISP:A:SCAL:AUTO: SING"

460 !

470 IOCAL Dsa iReturn the HP35660A to LOCAL
480 DISP "Program finished®

480 END

500 '

510 SUB Gen window(Wind(#),Ypo) !Subroutine to generate HANNING window
520 RAD Work in radians

530 DISP "Generating data for HANNING window...%

540 Const=2+PI/1023 'Do this calculation once
550 IF Ypoe=1 THEN 'Window is real. 1024 x 1
560 FOR I=0 TO 1023

570 Wind (I)=1.0+COS(I*Const+PI) |Generate window function
580 NEXT 1

590 ELSE 'Window is complex. 512 x 2
600 FOR I=0 TO 1023 STEP 2

610 Wind{I)=1.0+COS(I#*Const+PI) IGenerate real point

620 Wind{I+1)=0.0 !Set imaginary point to 0
630 NEXT T

640 END IF

650 SUBEND

6-14

Chapter 7
Command Reference

Introduction

This command reference deseribes all of the HP 35660A’s HP-IB commands. Figure 7-1
shows you the fields included in the command descriptions:

1. A summary of important command attributes.
One or more example statements that incorporate the command.
Command and/or query syntax.

. The format of returned data (for commands that have query forms).

oUW o

A detailed command description.

Command Referanse

*ESE?] command/query

Cuarlappad: no
Delayed result no @
Fass contrel required: no

Fowerup state: dependent on setting of *PSC

@ Exampis Stalements: optsuy 7i1;"vEsE 3*
DUTPUY 731;"=RaR?"

Command Symiax: RSB spr < value >

<value>umany integer ¥, where § = % = 253 (NRI format)
Query Syntax: *ESH?
Returned Format: <value><LF>< ~ENI=

wvalue > i=an integer (NE1 format)

Desscripticn:

This command aflows you to set bits in the Event Status enable register. Assign a decimal
welght to sach bit you want set according to the formuia:

®® ©

it mamber)

with acceptable values for bit_number being 0 through 7. Then add the weights of all set
bits and send the sum with this command.

When an enable reglster Bit i set to 1, the corresponding bit of the Event Status ragister s
enabled, The enabled bit will be included in the Event Status summary,

Figure 7-1. Sample Command Description

The overlapped, delayed result, and pass control attributes are described in Chapter 2,
“Behavior in an HP-IB System.” All example statements are written in HP BASIC 5.0 for an
HP Series 200 computer. Returned Format describes the format of returned data when
SYST:HEAD is OFF. See the SYST:HEAD command for information about the format of
returned data when SYST:HEAD is ON.

7-1

Command Raference

Conventions

Syntax and returned format descriptions use the following conventions:

¢ < > Angle brackets enclose the names of syntactic items that need further
definition. The definition will be included in accompanying text or in the
summary of common definitions that follows this section.

e 1= “is defined as’ When two items are separated by this symbol, the second
item can replace the first in any statement that contains the first item. For
example, A::=B indicates that B can replace A in any statement that contains A.

e | “or” When items in a list are separated by this symbol, one and only one of
the items can be chosen from the list. For example, A|B indicates that A or B
can be chosen, but not both.

* ... An ellipsis (trailing dots) is used to indicate that the preceding element may
be repeated one or more times.

¢ [1 Square brackets indicate that the enclosed items are optional.

® ™~ Tildes surround items that are understood as the default when none of
the items in a list are selected,

* { } Braces are used to group items into a single syntactic element. They are
most often used to encloge lists and to enclose elements that are followed by
an ellipsis.

In addition, the case of letters in the command mnemonics is significant. Mnemonics that
are longer than four characters can have a short form or a long form. The analyzer accepts
either form. Upper-case letters show the short form of a command mnemonic. For more
information, see “‘Command Abbreviation” in Chapter 3.

Common Definitions

Syntax and returned format descriptions have the following definitions in common:
e <LF> is the line feed character (ASCII decimal 10).

e < “END> is assertion of the HP-IB END message while the last byte of data is
on the bus.

s <sp> is the space character (ASCII decimal 32).

72

Command Reference

Common Commands

This section describes all of the IEEE 488.2 common commands that are implemented in
the HP 35660A. An important property of all common commands is that you can send
them without regard to a program message’s position in the command tree. For more
information on the analyzer’s command tree, see Chapter 3, “Programming with
Hierarchical Commands.”

*CAL? query

Overlapped: no

Delayed result: no

Pass control reguired: no
Power-up state: 0

Example Statement: ourpur 711;"*canz"

Guery Syntax: *CAL?
Returned Format: {0|1}<LF><"~END>
Description:

This query causes the analyzer to recalibrate. If the calibration is completed without error,
the analyzer returns 0. If the calibration is not completed without error, the analyzer
returns 1.

7-3

Command Reference

*CLS command

Overlapped: no

Delayed result: no

Pass control requiredt no
Power-up state: not applicable

Example Statement: ourpur 711;"*cLs”
Command Syntax: *CLS

Description:
This command clears the Status Byte register. It does so by clearing (resetting to 0) all bits

in the following event registers: '
* Data Integrity event register
¢ Device Status event register
* User Status event register
¢ Event Status register
In addition, *CLS clears the error queue and cancels any preceding *OPC command or query.

This ensures that bit 0 of the Event Status register will not be set and that no response wil}
be placed in the analyzer’s output queue when pending overlapped commands are completed.

*CLS does not change the current state of enable registers or transition registers.

NOTE *CLS should be sent immediately following a Program Message Terminator. This
guarantees that the Status Byte's Message Available (MAV) and Master Summary
Status bits will be cleared.

See Chapter 5 for more information on the Status Byte register.

7-4

Command Reference

*ESE[?] command/query

Overlapped: no

Delayed result: no

Fass control required: no

Power-up state: dependent on seiting of *PSC

Example Statements: ourpur 711;"*msE 1"
OUTPUT 711;"+*ESE?"
Command Syntax: *ESE<sp> <value>

<value>:=any integer x, where 0 £ x < 255 (NRf format)
Query Syntax; *ESE?

Returned Format; <value> <L.F>< ~END>

<value>:=an integer (NR1 format)

BDescription:

This command allows you to set bits in the Event Status enable register. Assign a decimal
weight to each bit you want set according to the formula:

z(bit_number)

with acceptable values for bit_number being 0 through 7. Then add the weights of all set
bits and send the sum with this command.

When an enable register bit is set to 1, the corresponding bit of the Event Status register is
enabled. The enabled bit will be included in the Event Status summary.

The Event Status summary is reported to bit 5 of the Status Byte register. Bit 5 is only set if
both of the following are true:

* One or more bits in the Event Status register are set

At least one of the set bits is enabled by a corresponding bit in the Event Status
enable register

The option last specified with *ESE is saved in nonvolatile memory when you send the
SYST:SAVE command. It can be recalled at power-up, depending on the setting of *PSC.
When the setting of *PSC is 0 at power-up, all bits in the Event Status enable register are set
according to the saved *ESE value. When the setting of *PSC is 1 at power-up, all bits in the
Event Status enable register are initialized to 0. The current setting of bits is not modified
when you send the *RST command.

The query returns the current state of the Event Status enable register. The state is
returned as a sum of the decimal weights of all set hits,

For more information on the Event Status register set, see Chapter 5.

75

Command Reference

*ESR? query

Overlapped: no

Delayed resull: no

Pass control requlired: no
Power-up state: 128

Example Statement: ourpur 711;"*EsrR?"
Query Syniax: *ESR?

Returned Format: <value> <LF>< "END>

<value> 1 =any integer x, where 0 = x < 255 (NR1 format)

Description:

This query returns the current state of the Event Status register. The state is returned as a
sum of the decimal weights of all set bits. The decimal weight for each bit is assigned
according to the formula:

g(bit_number)

with acceptable values for bit_number being 0 through 7.
The register is cleared after being read by this query.
A bit in the Event Status register is set to 1 when the condition that bit monitors becomes
true. A set bit remains set, regardless of further changes in the condition it monitors, until
the Event Status register is:

* Read by this query or

» (leared by the *CLS command.

For more information on the Event Status register set, see Chapter 5.

7-6

Command Reference

*IDN? query

Overlapped: no

Delayed result: no

Pass control required. no

Power-up state: instrument dependert

Example Statement: ourpur 711;"+IDNZ"
Guery Syntax: *IDN?

Returned Format: HEWLETT-PACKARD, 356604, <serial num>,
<revision_npum><LF><~END>

<serial num>::=10 ASCII characters
<revision_num>:=T7 ASCII characters

Description:
The response to this query uniquely identifies your analyzer.

77

Command Reference

*OPC[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statements: ourpur 711;"*opc"
OUTPUT T711;"*0PC?"

Command Syntax: *OPC
Query Syntax: *OPC?
Returned Format: 1<LF><"END>

Description:

Use *OPC or *OPC? if you want to know when all pending overlapped commands have
been completed.

Most commands that you send to the analyzer are processed sequentially. A sequential
command will hold off the processing of any subsequent commands until it has been
completely processed. However, some commands will not hold off the processing of
subsequent commands; they are referred to as overlapped commands.

The analyzer uses an operation complete (OPC) flag to keep track of overlapped commands
that are still pending (that is, not completed). The OPC flag is reset to 0 when an overlapped
command is pending. It is set to 1 when no overlapped commands are pending. You can not
read the OPC flag directly, but you can use *OPC and *OPC? to tell when the flagis set to 1.

If you use *OPC, bit 0 of the Event Status register is set to 1 when the OPC flag is set to 1.
This allows the analyzer to generate a service request when all pending overlapped
commands are completed (assuming you have enabled bit 0 of the Event Status register and
bit 5 of the Status Byte register).

If you use *OPC?, 1 is placed in the output queue when the OPC flag is set to 1. This allows
you to effectively pause the controller until all pending overlapped commands are completed.
it must wait until the response is placed in the queue before it can continue.

NOTE The *CLS and *R8T commands cancel any preceding *OPC command or query.
Pending overlapped commands are still completed, but you can no longer
determine when. Two HP-IB bus management commands Device Clear (DCL) and
selected Device Class (SDC) will also cancel any preceding *OPC command
or query.

7-8

Command Reference

*OPT? query

Overtapped: no

Delayed Result: no

Pass Control Required: no

Power-up state: instrument dependent

Example statement: outpuT 711; "*opT2”
Query Syntax: *OPT?

Return Format: {0] <option>[<option>1} <LF>< ~ END>

<option>:: = a series of ASCII characters describing an instrument option
{(never more than 255 characters).

Descripticn:

This query allows the analyzer to report any options it contains. For example, if your
analyzer contains an internal disc drive, it returns DISC in response to this query.

The analyzer returns 0 if it contains no special options.

7-9

Command Reference

*PCB command

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: saved in nonvolatile memory

Example Statement: ourpuT 711;"*pcB 21"

Command Syntax: *PCB<ap> <value>[<value>]

value::=an integer (NRf format)

Description:

Use this command to specify the address of a controller that is temporarily passing control of
the HP-IB to the analyzer. When the analyzer completes the operation that required it to
have control of the bus, it automatically passes control back to the controller at this address.

The optional second <value> is only used for controllers that have extended addressing.
It is interpreted as the secondary address of the controller.

"The option last specified with this command is saved in nonvolatile memory when you send

the SYST:SAVE command. This means that when you turn the analyzer off and then back
on, the specified controller address does not change.

7-10

Command Reference

*PSC?] command/query

Overlapped: no

Delayed result no

Pass control required: no

Power-up state: saved in nonvolatile memaory

Example Statements: ourrur 711;"+#pPsc 1"
OUTPUT 711;"*PSC?"

Command Syntax: *PSC<sp>{0[1}
Guuery Syntax: *PSC?
Returned Format: {0|1}<LF><"~END>

Description:

This command allows you to specify whether or not the Service Request enable register and
the Event Status enable register should be cleared (all bits reset to 0) at power-up.

The settings of the Service Request enable register and the Event Status enable register are

saved in nonvolatile memory when the analyzer is turned off. These settings can be recalled
when you turn the analyzer on, but only if the Power-on Status Clear (PSC) flag is reset to 0.
When the PSC flag is set to 1, the two enable registers are cleared at power-up. Use *PSC to
specify the setting of the PSC flag.

The option last specified with *PSC is saved in nonvolatile memory when you send the
BYST:SAVE command. This means that when you turn the analyzer off and then back on,
the state of *PSC does not change.

If you want the analyzer to generate a service request at power-up, bit 7 of the Event Status
register and bit 5 of the Status Byte register must be enabled. This is only possible if the
PSC flag is set to 0.

The query returns the current setting of the PSC flag.

7-1

Command Reference

*RST

command

Example Statement: outpuT 711;"*RST"
Command Synta: *RST

Description:

This command returns the analyzer to its power-up state.
or *OPC? and clears all event registers.

The following are not affected by this command:

» All states saved in nonvolatile memory

¢ The state of all enable and transition registers
¢ The state of INP:UNIT:EU:MULT

¢ The state of INP:UNIT:EU:NAME

¢ The state of CAL:AUTO

¢ The state of SYST:BEEP

* Calibration constants

¢ Math functions and constants

¢ The input buffer and output queue

¢ Limit and data table entries

Overlapped: yes

Delayed resuit: no

Pass control required: no
Power-up state: not applicabie

In addition, it cancels any *OPC

For a list of the states saved in nonvolatile memory, see the SYST:SAVE command.

712

Command Refsrence

*SRE[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: dependent on setling of *PSC

Example Statement: ourpuT 711;"*SRE 160"
oUTPUYT 711;"*SRE?"

Command Syntax: *SRE<sp><value>

<value>:=any integer x, where 0 s x s 255 (NRf format)

Query Syntax: *SRE?

Returned Format: <value><LF>< ~END>

<value>::=an integer (NR1 format)

Description:

This command allows you to set bits in the Service Request enable register. Assign a decimal
weight to each bit you want set according to the formula:

2(bit“number)

with acceptable values for bit_number being 0 through 7. Then add the weights of all set
bits and send the sum with this command.

NOTE The analyzer ignores the setting you specify for bit 6 of the Service Request enable
register. This is because the corresponding bit of the Status Byte register is
always enabled,

The analyzer requests service from the active controller when one of the following occurs:

* A Dbit in the Status Byte register changes from 0 to 1 while the corresponding bit
of the Service Request enable register is set to 1,

¢ A bit in the Service Request enable register changes from 0 to 1 while the
corresponding bit of the Status Byte register is set to 1. '

The option last specified with *SRE is saved in nonvolatile memory when you send the
SYST:SAVE command. It can be recalled at power-up, depending on the setting of *PSC.
When the setting of *PSC is 0 at power-up, all bits in the Service Request enable register are
set according to the saved *SRE value. When the setting of *PSC is 1 at power-up, all bits in
the Service Request enable register are initialized to 0. The current setting of bits is not
modified when you send the *RST command.

The query returns the current state of the Service Request enable register. The state is
returned as a sum of the decimal weights of all set bits.

7-13

Command Reference

*STB?

query

Overlapped: no
Delayed result: no

Pass control required. no
Power-up state: variable

Example Statement: ourpur 711;"+sTB?"

Query Syniax: *STBY?

Returned Format: «value><LF>< ~END>

<value>:=any integer x, where ¢ < x < 255 (NR1 format)

Description:

This query returns the current state of the Status Byte register. The state is returned as a
sum of the decimal weights of all set bits. The decimal weight for each bit is assigned
according to the formula:

g(bit_number)

with acceptable values for bit_number being 0 through 7.

The setting of bits is not affected by this query. To reset the bits in the Status Byte register,
you must use the *CLS command.

Bits in the Status Byte register are defined as follows:

®

@

Bit 0 summarizes all enabled bits of the User Status event register.
Bits 1, 2, and 3 are reserved.

Bit 4 is the Message Available (MAV) bit. It is set whenever there is something
in the analyzer’s output queue.

Bit 5 summarizes all enabled hits of the Event Status register.

Bit 6, when read with this query (*STB?), acts as the Master Summary Status
(MSS) bit. It summarizes all enabled bits of the Status Byte register. (Bit 6 acts
as the Request Service (RQS) bit when it is read by a serial poll.)

Bit 7 summarizes all enabled bits of the Device Status event register.

For more information on the Status Byte register, see Chapter 5.

7-14

Command Reference

*TRG command

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statement: ourpur 711;"*TRG"
Command Syntax: *TRG

Description:
This command triggers the analyzer if the following two things are true:

¢ The trigger source must be the HP-IB (TRIG:SOUR BUS)

¢ The analyzer must be ready to trigger. (Bit 2 of the Device Status condition
register must be set.)

The *TRG command has the same effect as TRIG:IMM. It also has the same effect as the
HP-IB bus management command Group Execute Trigger (GET).

*TST? query

Overlapped: no
Delayed result: no

Pass control required; no
Power-up state: 0

Example Statement: ourpur 711;"*TsT?”
Query Syniax: *PST?
Returned Format: {0|1}<LF><"END>

Description:
This query invokes a self-test that verifies proper operation of the analyzer’s hardware.

When you send the query, the analyzer self-calibrates and then compares the calibration
results to specified limits. If the results are within the specified limits, the analyzer
returns 0. If the results exceed the specified limits, the analyzer returns 1.

7-15

Command Reference

*WAI command

Overfapped: no

Delayed result: no

Pass conirol required: no
Power-up state: not applicable

Example Statement: outpur 711;"*waz"
Command Syntax: *WAT

Description:

Use *WAI to hold off the processing of subsequent commands until all pending overlapped
commands have been completed.

Most commands that you send to the analyzer are processed sequentially. A sequential
command will hold off the processing of any subsequent commands until it has been
completely processed. However, some commands will not hold off the processing of
subsequent commands; they are referred to as overlapped commands. *WAI ensures that
averlapped commands will be completely processed before subsequent commands (those sent
after *WAI) are processed.

716

Command Reference

Device-Specific Commands

ARM subsystem

Description:

This subsystem contains commands and queries related to the analyzer’s trigger arming
functions. See the TRIG subsystem for commands related to other triggering functions.

ARM[:IMMediate] command

Cverlapped: no

Delayed result: no

Pass control required: no
Power-up state; not applicable

Examplie Statements: ourrur 711;"arm"
OUTPUT 711;"Arm:Immediate”

Command Syntax: ARM[:IMMediate]

Description:
This command enables triggering when the following two things are true:

¢ Manual arming is selected.

¢ Bit 3 of the Device Status condition register (ready-for-arm) is set to 1.

After sending the command, triggering occurs when the appropriate trigger signal is
received. The command is ignored when automatic arming is selected.

See ARM:SOUR for more information on arming modes and TRIG:SOUR for information on
selecting the trigger signal.

717

Command Refarence

ARM:SOURce[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: FREE

Example Siatements: ouTPUT 711;"ARM:SOUR FREE"
QUTPUT 711;"ARM:SOURCE HOLD"
OUTPUT 711;"ArmsSour?”

Command Syntax: ARM:SCURce<sp> {FREErun |HOLD}
Query Syntax: ARM:SOURce?
Returned Format: {FREE|HOLD} <LF>< ~END>

Description:
This command allows you to select one of two modes for arming the trigger. The modes are:

¢ Automatic arming (ARM:SOUR FREE)
¢ Manual arming (ARM:SOUR HOLD)

In order for the analyzer to make a measurement, its trigger must be armed before a trigger
signal is received. For non-averaged measurements, the trigger must be armed before each
measurement. For averaged measurements, the trigger must be armed before each new
time record.

When you start a measurement with automatic arming selected, the analyzer waits for the
digital filters to settle and then triggers as soon as a trigger signal is received. When the
measurement or average is completed, the trigger is automatically re-armed.

When you start a measurement with manual arming selected, the analyzer waits for the
digital filters to settle and then waits for you to send the ARM:IMM command. Once both of
these conditions are met, the analyzer {riggers as soon as a trigger signal is received. When
the measurement or average is completed, you must once again send the ARM:IMM
command to re-arm the trigger.

The query returns an ASCII string that indicates whether FREErun or HOLD is selected.
See TRIG:SOUR for information on selecting the trigger signal.

7-18

Command Reference

AVERage subsystem

Description:
This subsystem contains commands related to the analyzer’s data averaging functions.

AVER:COUNt[?] command/query

Cverlapped: no
Delayed result; yes
Pass control required: no
Power-up state; 10

Example Statements: ourpur 711;"AvER:COUN 5"
OUTPUT 711;"Average:Count 100"
OUTPUT 711;"AVER:COUNZ"

Command Syntax: AVERage:COUNt<sp><value>
<value>:=a single integer from 1 to 89999 (NRf format)

Query Syntax: AVERage:COUNt?

Heturned Format: <value><LF>< ~END>

<value>:=a single integer (NR1 format)

Description:

The value sent with this command is used in different ways, depending on the kind of
average weighting you have specified. When stable weighting is specified (AVER:WEIG
STAB), the value you send with this command determines the number of averages required
to complete a measurement. When exponential weighting is specified (AVER:WEIG EXP),
the value you send with this command determines two things:

* The number of averages required to complete the first phase of an exponentially
averaged measurement

* The weighting factors for new and old data during the second phase of an
exponentially averaged measurement

If peak averaging is selected (AVER:TYPE PEAK), or if averaging is turned off (AVER:STAT
OFF), the value sent with this command does not affect the measurement.

The value sent with this command affects the setting of the measuring bit in the Device
Status condition register. For more information, see Chapter 5, “Using the HP 35660A°s
Status Registers.”

The query returns a value indicating the current number of averages selected.

7-18

Command Reference

AVER:DISPiay selector

Description:

This command only selects the AVER:DISP subsystem. Sending AVER:DISP alone
does nothing.

AVER:DISP:RATE[?] command/query

Overlapped: no
Delayed result: yes

Pass conirol required: no
Power-up state: 5

Example Statements: ourpur 711;“aver:disp:rate 10"
OUTPUT 711;"AVERAGE:DISPLAY:RATE 5"
CUTPUT 711;"AVER:DISP:RATE?"

Command Syniax: AVERage:DISPlay: RATE<sp> <value>
<value>: =3 gingle integer from 1 to 89999 (NEf format)

Gluery Syntax: AVERage:DISPlay:RATE?

Returned Format: <value><LF><~END>
<value>:=a single integer (NR1 format)

Description:

When fast averaging is turned on (AVER:DISP:RATE:STAT ON) you can specify an interval
for display updates. This is the command you use to specify that interval. For example, if
you send AVER:DISP:RATE 5, the display is updated once every 5 averages.

The value specified with this command is not used if fast averaging is turned off
(AVER:DISP:RATE:STAT OFF).

The query returns a value that indicates the current display update rate.

7-20

Command Reference

AVER:DISP:RATE:STATe[?] command/query

Overlapped: no
Delayed result yes
Pass controf required: no
Power-up state: 0

Example Statements: ourpur 711;"AVER:DISP:RATE:STAT 1"
QUTPUT 711;"Average:Display:Rate:State OfL”
OUTPUT 711;"aver:disp:rate:stat?”

Command Syntax: AVERage:DISPlay:RATE:STATe<sp>{OFF[ON!0]1}
Query Syntax: AVERage:DISPlay:RATE:STATe?
Returned Format: {0]1}<LF><"END>

Description:

Use this command to turn fast averaging off and on. When fast averaging is off, the display
is updated each time one average is taken.

When fast averaging is on, the display is updated each time a specified number of averages is
taken. The number can be from 1 to 99,999 and is specified with the AVER:DISP:RATE
command. For example, if fast averaging is on (AVER:DISP:RATE:STAT ON), and the value
of AVER:DISP:RATE is 5, the display is updated every 5 averages. If the number specified in
AVER:DISP:RATE is larger than the number of averages required to complete your
measurement, the display is only updated when the measurement is paused or completed.

The query returns 0 if fast averaging is off, 1 if it is on.

AVER:INITialize command

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: not applicable

Example Statements: outeur 711;“Aver:Init"
OUTPUT 711;"AVERAGE:INITIALIZE"

Command Syntax: AVERage:INITialize

Description:

This command sets a flag so that the next INIT:STAT RUN command will start a new
running average. For example, if a measurement is paused and you send AVER:INIT
followed by INIT:STAT RUN, a new running average is started after the old one is discarded.
However, if 2 measurement is paused and you only send INIT:STAT RUN, the paused
measurement continues from where it was stopped and new data is averaged in with the old
running average.

7-21

Command Reference

AVER:OVERIlap[?] command/query

Overlapped: no
Delayed result: yes

Pass control required: no
Power-up state: 0

Example Statements: ourpur 711;"AVER:OVER .17
oUTPUT 711;"average:overlap 9%0PCT”
OUTPOT 711; "AVERAGE:OVERLAP?"

Command Syntax: AVERage: OVERIlap<sp>{{<percent>PCT} | <fraction>}

<percent>:i=an integer from 0 to 99 (NRSf format)

<fraction >::=a decimal number from .00 to .99 in increments of .01 (NRf format)

Guery Syntax AVERage: OVERlap?

Returned Format: <fraction><LE>< ~END>

<fraction>::=a decimal number (NR2 format)

Description:

Under certain conditions, data points from the end of one time record can be reused at the
beginning of the next time record. This results in the overlapping of time records. Use the
AVER:OVER command to specify the maximum amount of time record overlap you want
to allow.

Overlapping becomes possible when the instrument takes more time to collect time records
than it does to process them. This occurs at narrower frequency spans. At spans narrow
enough to allow the requested amount of overlapping, time records will be overlapped.

You can specify overlap either as a percentage or as a fraction of the time record length.
AVER:OVER 22PCT is the same as AVER:OVER 0.22. In either case, the value you send is
rounded to the nearest allowable percentage (an integer between 0 an 99). You can step the
current overlap setting up or down 1% by sending AVER:OVER UP or AVER:OVER DOWN,

The query returns a value that indicates the amount of overlap currently specified. The
value is returned in fractional form.

7-22

Command Reference

AVER[:STATe][?] command/query

Overlapped: no
Delayed result; yes

Pass control required; no
Power-up state: 0

Example Statements: ourpur 711;"aver org*
OUTPUT 711;"AVERAGE:STATE 1"
CUTPUT 711;"Aver?"

Command Syntax: AVERage[:STATe]<sp>{OFF|ON}0}1}
Query Syntax: AVERage[:STATe]?
Returned Format: {0i1}<LF><~END>

Description:
Use this command to turn averaging off and on.

The query returns 0 if averaging is off, 1 if averaging is on.

See the following for more information:

* AVER:TYPE - for selecting an averaging type.
¢ AVER:WEIG - for specifying how averaged data should be weighted.
* AVER:COUN - for specifying the number of averages

7-23

Comimand Reference

AVER:TYPE[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: RMS

Exampie Statemenis: ouTpuT 711;"AVER:TYPE RMS"
oUTPUT 711;*Average:Type Peak"
oUTPUT 711l; Aver:Type?”

Command Syntax: AVERage:TYPE<sp> {PEAK|RMS|VECTor}
Query Syntax: AVERage: TYPE?
Returned Format: {PEAX|RMS|VECT}<LF><"~END>

Description:

This is one of two commands that affect the way running averages of measurement data are
calculated. The other command is AVER:WEIG.

You can specify one of three options with this command:

* Rms - root mean square averaging of the last n power spectra or linear averaging
of the last n cross spectra

¢ Vector — vector averaging of the last n linear spectra

¢ Peak hold - point by point maximum of the last n power spectra, not available
for cross spectra

With rms averaging selected (AVER:TYPE RMS), you get a good approximation all input
signal components, including noise. Each frequency bin is averaged separately.

With vector averaging (AVER:TYPE VECT) and an appropriate trigger source selected, noise
components tend to cancel. This allows you to resolve smaller periodic signals. Each
frequency bin is averaged separately.

With peak hold selected (AVER:TYPE PEAK), the peak value for each frequency bin is
retained each time a new power spectrum is acquired. The value of AVER:COUN is not used
to stop the acquisition of new spectra, so they are acquired continuously until the
measurement is paused.

When stable weighting is selected, rms and vector averaging stop when the specified number
of averages is acquired. When exponential weighting is selected, rms and vector averaging
continue indefinitely until the measurement is paused.

The query response indicates which type of averaging is currently selected.

7-24

Command Reference

AVER:WEIGhting[?] command/query

Overlapped: no
Delayed result: yes
Pass control required; no
Power-up state: STAB

Example Statements: ourpuT 711;"aver:veig stab”
OUTPUT 71il:"Average:Weighting Exponential™
CUTPUT 711;"AVER:WEIG?"

Command Syntax: AVERage:WEIGhting<sp> {EXPonential | STABle}
Query Syntax: AVERage:WEIGhting?
Returned Format: {EXP|STAB}<LF>«< ~END>

Description:
This command allows you to specify how averaged data will be weighted. The options are:

¢ Stable (or uniform) weighting (AVER:WEIG STAR)
¢ Exponential weighting (AVER:WEIG EXP)

With stable averaging selected, each spectrum included in the running average is weighted
equally. Also, the measurement stops when the specified number of averages has
been acquired.

With exponential averaging selected, there are two distinct phases to the averaging process,
During the first phase, each spectrum included in the running average is weighted equally, as
in stable averaging. During the second phase, new and old data are weighted as follows:

[(1/N) Xnew]+[{((N~1)/N) x old]

Where: N is the value of AVER:COUN (number of averages)
new is the most recently acquired spectrum
old is the data in the running average

The first phase of an exponentially averaged measurement continues until the running
average includes the number of spectra specified in AVER:COUN (number of averages).
The second phase continues indefinitely until the measurement is paused.

The setting of AVER:WEIG is not used if peak hold averaging (AVER:TYPE PEAK)
is selected.

The query returns 2 mnemonic that indicates the type of weighting selected: EXP for
exponential or STAB for stable weighting.

725

Command Reference

7-26

Command Reference

CAlLibration subsystem

Description:
This subsystem contains commands related to calibration of the analyzer.

CAL[ALL]? guery

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Siatemeni: ovurpur 711:“Ccan?®
Query Syntax: CALibration[:ALL]?

Returned Format: <value><LF»>< ~END>
<valte>::=an integer (NR1 format)

Description:

The instrument performs a full calibration when you send this query. The query response is
a 0 if the calibration is successful. The response is a non-zero integer if the calibration fails,
with the integer being an error number. '

The calibration routine performed when you send this query is the same as the calibration
routine performed when you send the CAL:SING command.

727

Command Reference

CAL:AUTO][?] command/query

Overlapped: no
Delayed result: ves

Pass control required: no
Power-up state: 1

Example Statements: ovrpur 711;"CAL:AUTC OFF"
oureT 711;:"calibration:auto 17
QUTPUT 711;"Cal:Auto?"

Command Syntax: CALibration:AUTO<sp>{OFF|ON|0]1}

Query Syntax: CALibration:AUTO?
Heiurned Format: {0[1}<LF><"~END>
Description:

Use this command to enable and disable the analyzer’s autocalibration routine. The routine
causes the analyzer to calibrate automatically at power-up, several times during the first
hour of operation, and once each hour after that.

NOTE The autocalibration routine does not interrupt an averaged measurement
in progress.

When you turn autocalibration off (CAL:AUTO OFF), the analyzer is only recalibrated when
you send the CAL:SING command or the CAL:ALL query. Calibration always oceurs
automatically at power-up.

The query returns O if autocalibration is disabled, 1 if it is enabled.

7-28

Command Reference

CAL:CLEar command

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: not applicable

Exampie Statements: ourpur 711;"cal:Cle”
OUTPUT 711;"CALIBRATION:CLEAR"

Command Syntax: CALibration:CLEar

Description:

This command clears all calibration constants until the next calibration occurs. While the
calibration constants are cleared, data from the current measurement is uncalibrated.

If autocalibration is enabled (CAL:AUTO ON), the calibration constants can remain cleared
for as long as one hour. If autocalibration is disabled, the constants remain cleared until you
send CAL:ALL? or CAL:SING.

Bit 2 of the Data Integrity Condition register indicates whether or not the calibration
constants are currently cleared.

CAL:SINGle command

Overapped: ves

Delayed result: no

Pass controi reguired: no
Power-up state: not applicable

Example Statements: ourrur 711;"car:siNg”
OUTPUT 71l;"Calibration:Single”

Command Syntax: CALibration:SINGle

Description:

This command causes the analyzer to recalibrate immediately. The calibration occurs
whether the autocalibration routine is enabled or disabled (CAL:AUTO ON or OFF). The
analyzer’s measurement activities are suspended during the calibration.

729

Cormnmand Referenca

CAL:TRACe[?] command/query

Overlapped: no
Delayed result: yes

Pass control required: no
Power-up state: 0

Example Statements: ourput 711;"CAL:TRAC 17
OUTPUT 711:"Calibrationstrace QFF"
OUTPUT 711;"CAL:TRAC?"

Command Syntax: CALibration:TRACe<sp>{OFF|ON|0]1}

Guery Syntax: CALibration:TRACe?
Returned Format: {0}1}<LF><~END>
Description:

This command allows you to display the calibration constants that will be used for a
particular measurement setup. To display the constant for a setup, you must do all of
the following:

1. Specify the measurement setup
2. send CAL:TRAC ON
3. send INIT:STAT STAR
The query returns 0 if the calibration constants are not being displayed, 1 if they are.

7-30

Command Reference

CONFigure subsystem

Description:

The single command in this subsystem is used to switch the analyzer between its
one-channel and two-channel operating modes.

7-31

Command Reference

CONF.TYPE[?] command/gquery

Overlapped: no
Delayed result: yes

Pass control required: no
Power-up state: SPEC

Example Statements: ovrpur 711;"conf:type spec”
QUTPUT 711;"CONFIGURE:TYPE NETWORK"
OUTPUT 711:"Conf:Type?”

Command Syntax: CONTFigure:TYPE<sp> {(NETWork | SPECtrum}
Query Syntax: CONFigure: TYPE?
Returned Format: {NETW|SPEC}<LF>< ~END>

Descrintion:
Use this commangd to select the analyzer’s one-channel or two-channel operating mode.

The one-channel mode is selected with CONF:TYPE SPEC. In this mode, channel 1 can
analyze signal components up to 102.4 kHz. Channel 2 is not used at all. The following data
can be displayed in this mode:

* Channel 1 time (TRAC:RES TIME1)

¢ Channel 1 spectrum, linear or power (TRAC:RES SPEC1)

« Channel 1 power spectral density (TRAC:RES PSD1)

¢ Functions 1-5 (TRAC:RES F1-5)

e Constants 1-5 (TRAC:RES K1-5)

* Recalled traces (MMEM:LOAD:TRAC <file spec>)

The two-channel mode is selected with CONF:TYPE NETW. In this mode, channels 1 and 2
can both analyze signal components up to 51.2 kHz. When this mode is selected, all data
available in the one-channel mode and the following additional data can be displayed:

» Channel 2 time (TRAC:RES TIME2)

* Channel Z spectrum, linear or power (TRAC:RES SPEC2)
¢ Channel 2 power spectral density (TRAC:RES PSD2)

* Frequency response (TRAC:RES FRES)

¢ Coherence (TRAC:RES CCH)

» Cross spectrum (TRAC:RES CSP)

The query returns SPEC if the one-channel mode is selected, NETW if the two-channel mode
is selected.

7-32

Command Reference

DISPlay subsystem

Description:

This subsystem has three main purposes:
+ It provides commands for setting x-axis and y-axis scaling on the two displays.
» It provides access to the limit table data and many of the limit table functions.

» [t provides access to the displayed data (data that has already been transformed
into the current digplay coordinates). See the TRAC subsystem for access to the
raw data from which the displayed data is derived.

The following diagram shows you the difference between data available in the TRAC
subsystem and the DISP subsystem:

Math i .
Measurement d . Coardinate i Display
Operations Transformation F——-

/ {L.ogarithmic 1
E Magnitude,
Phase.etc.)

TRAGDATA DISF:DATA
complex or real ciways real

Figure 7-2. Flow of Measurement Data

After measurement data is collected, any specified math operations are performed. Datais
then transformed into the specified coordinate system and sent to the display. TRAC:DATA
provides access to the raw measurement data after math operations have been performed.
This data can be either complex or real. DISP:DATA provides access to the displayed data,
after the coordinate transformation. This data is always real.

NOTE Both TRAC:DATA and DISP:DATA allow you to take measurement data out of the
analyzer. However, only TRAC:DATA allows you to put measurement data back
into the analyzer.

With a few exceptions, display commands must be directed to one of the two displays: A or B.
To specify a display, insert one of the following items between DISPLAY or DISP and the rest
of the command:

¢ :A-asin DISP:A:GRAT ON
¢ :B~asin DISPLAY:B:L.IM:BEEP?
¢ 1 -asin DISPLAY1:X:SPACING LIN
¢ 2 -asin DISP2:Y:SCAL:STAR?
Using :A or 1 directs the command to display A. Using :B or 2 directs the command to

display B. If you don’t explicitly specify one of the displays, the command is directed to
display A.

NOTE The display to which you direct a command becomes the active display.

7-33

Command Reference

When HFP Instrument BASIC is installed in the analyzer, additional commands are added
to this subsystem. For information on these commands, see Appendix D in the
HPF Instrument BASIC Programming Reference.

DISP:DATA? query

Overlapped: no

Delayed result: no

Pass controf required: no
Power-up state: not applicable

Example Statement: ouvrpur 711;"DpIsp:baraz”

Guery Syntax: DISPlay[<spec>1.DATA?
<gpecru= ":AT [B|1|2
Returned Format: <block_data>

<block_data> takes one of two forms, depending on whether the data is ASCII-encoded or
binary-encoded. When data is ASCIl-encoded (DISP:HEAD:AFOR ASC):

<block data>:={<point>}..<point n><LF><"~END>

<point>::=the y-axis values for the 1st through nth x-axis points (n is returned with the
DISP:HEAD:POIN? query)

All y-axis values are returned in NRf format.

When data is binary-encoded (DISP:HEAD:AFOR FP32 or DISP:HEAD:AFOR FP64):
<block data>:=#<byte> <length bytes>{<point>}...
<byte>::=one ASCII-encoded byte that specifies the number of length bytes to follow
<length_bytes>::=ASCII-encoded bytes that specify the number of data bytes to follow

<point>:=the y-axis values for the 1st through nth x-axis points (n is returned with
DISP:HEAD:POIN?)

If DISP:HEAD:AFOR FP32 is specified, y-axis values are encoded as 32-bit binary floating
point numbers. If DISP:HEAD:AFOR FP64 is specified, y-axis values are encoded as 64-bit
binary floating point numbers.

Descriplion:

This query dumps data from the specified display to the analyzer’s output gueue. Your
controller can then read the data from the queue. The data returned by this query has

already undergone a coordinate transform, so the y-axis values are in the current display
units (returned from DISP:HEAD:YUN?).

The x-axis value for a given point is implied by the crder of the points. DISP:HEAD:XOR is
the x-axis value for the first point. Add DISP:HEAD:XINC to the first point’s z-axis value to
get the value of the second point. Add DISP:HEAD:XINC to the second point’s x-axis value
to get the value of the third point and so on.

7-34

Command Reference

DISP:GRATicule[?] command/query

Overlapped: no
Defayed result: no

Pass contral required: no
Power-up state: 1

Example Statements: ovrpur 711;"bisp:Grat 0¥
OUTPUT 71l;“DISPLAY:B:GRATICULE ON"
QUTPUT 7T11:"DISE2:GRAT?"

Command Syntax; DISPlayl <spee>]:GRATicule<sp>{OFF|ON|0[1}
<gpec>i=":A" [:B]1}2

Guery Syntax: DISPlay[<spec>1:GRATicule?
Returned Format: {0]1}<LF><"~END>
Description:

Each display’s graticule lines (or trace grid) can be turned on and off with this command.
When a grid is turned off (DISP:GRAT OFF), it is not displayed, plotted, or printed.

The query returns 0 if the specified display’s graticule is off, 1 if it is on.

DISP:HEADer selector

Description:

This command only selects the DISP:HEAD subsystem. Queries in this subsystem are used
to determine characteristics of the data returned by the DISP:DATA query. Sending
DISP:HEAD alone does nothing.

7-35

Command Reference

DISP:HEAD:AFORmat[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: ASC

Example Statements: ourrur 711;"DISP:B:HEAD:AFOR FP64"
OUTPUT 711;*DISPLAY:HEADER:AFORMAT ASCII™
OUTPUT 711;"Disp:Head:Afor?"

Command Syntax: DISPlay| <spec>]:HEADer:AFORmat<sp>{ASCii|FP32|FP64}
<spec>u=":A7|:B}1]|2

Query Syntax: DISPlay{ <spec>1:HEADer:AFORmat?
Returned Format: {ASC|FP32|FP64}<LF><~END>
Description:

Display data can either be ASCII-encoded or binary-encoded when it is dumped to the
analyzer’s output queue using the DISP:DATA query. This command lets you specify how
the display data should be encoded.

NOTE Data encoding must be the same for both displays at any given time. So
regardless of the display you specify when you send this command, encoding for
both will be changed,

When ASC is selected, data is sent as a series of y-axis values separated by commas. The
values are ASCI-encoded and are formatted as NRf decimal numbers.

FP32 and FP64 both specify binary encoding, When FP32 is selected, data is sent as a series
of y-axis values within a definite length block. The values are encoded as 32-bit binary
floating point numbers. When FP64 is selected, data is also sent as a series of y-axis values
within a definite length block. However, the values are encoded as 64-bit binary floating
point numbers.

For more information on data encoding and data transfer formats, see Chapter 4,
“Transferring Data.”

The query returns ASC, FP32, or FP64, depending on the option currently specified.

7-36

Command Reference

DISP:HEAD:NAME®? guery

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: "Spectrum Chan 1"(display A)
“Time Chan 1" (display B)

Example Statement: ourpuT 711;"DISP1:HEAD:NAME?"

Guery Syntax: DISPlay[<spec>]:HEADer:NAME?
<gpec>u= AT |:B|1]|2

Returned Format: "<trace name>"<LF>< ~END>

<trace_name>:=0 to 30 printable ASCII characters

Description:

This query returns the name of the specified display. When looking at the analyzer’s screen,
you will see the name in the lower-left corner of the specified display.

You can change the name with the TRAC.TITL command.

DISP:HEAD:POINts? Query

Overlapped: no

Delayed result; no

Pass control required: no
Power-up state: 401 (display A)
1024 {display B)

Example Statement: ourpur 711;"DISP2:HEAD:POIN?"

Guery Syntax: DISPlay[<spec>1:HEADer:POINts?
<gpec>i=":A7 [:B|1[2
Returned Format: <value><LF>< ~END>

<value>:=an integer (NR1 format)

Description:

A display’s x-axis is divided into discrete points. Use this query to determine how many
discrete points there are along the specified display’s x-axis. This is the number of points
that will be dumped to the analyzer’s output queue when you send the DISP:DATA query.

7-37

Command Reference

DISP:HEAD:PREamble? guery

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: variable

Example Statement: ouTpur 711;"DISP:HEAD:PRE?®

Query Syniax: DISPlayl <gpec>]:HEADer:PREamble?
<spec>u=" A" |:B|1|2

Returnad Format: <points>,<x_per_point>,<x origin>,<x_increment>,
<y _per_point>,<y_origin» <y_increment> <LF>< "~ END>

< points>=nuinber of discrete points on the display’s x-axie (same as returned with
DISP:HEAD:POIN?

<g_per_point>:=number of x-axis values per point (same as returned with DISP:HEAD:XPOT)
<X_origin>:=x-axis value of the first point (same as returned with DISP:-HEAD:XOR?)

<x_increment>:wincrement between x-axis points (same as returned with DISP-HEAD:XINC?)

<y _per_point>:=number of y-axis values per point (same as returned with DISP:HEAD:YPO?)

<y_otigin>::=y-axis value of the lowest point on the specified trace (same as returned with
DISP:HEAD:YORD)

<y_increment>:=optimum y-axis value per division (same as returned with
DISP:HEAD:YINC?)

<points>, <x_per_point>, and <y_per_point> are integers (NR1 format). All other values
are decimal numbers (NR2 or NR3 format).

Description:

This query returns seven pieces of information separated by commas. The information is
useful for setting up an array to receive display data (returned from DISP:DATA?).

NOTE As the Returned Format indicates, each piece of information can be returned
separately in response to its own query,

The <points>, <x_per_point>, and <y_per_point> values are used together to tell you how
many values you must read after sending the DISP:DATA query. The formula is:

of values to read = <points> X(<x_per_point+<y per point>)

7-38

Command Reference

The analyzer does not return x-axis values for each data point. Instead, it provides
<x_origin> and <x_increment> values so you can assign an x-axis value to each returned
point. <x_origin> is the x-axis value for the first point, Add <x_increment> to the first
point’s x-axis value to get the value of the second point. Add <x_increment> to the second
point’s x-axis value to get the value of the third point and so on.

The values returned in <y origin> and <y_increment> should be ignored when the value of
<y_points> is something other than 0 (zero).

DISP:HEAD:XINCremeni? query

Cverlapped: no

Delayed result: no

Pass control required: no
Power-up state: 256 (display A)
3.81E-6 (display B)

Example Statement: ourpur 711;"DISP:sA:BEAD:XINC?"

Query Syntax: DISPlay[<spec>]1:HEADer:XINCrement?
<gpec>u=":A" |:B{1|2

Returned Format: <value><ILF>< "~ END>

<value>::=g decimal number (NRf format)

Description:

This query returns the increment between x-axis values on the specified display. The value is
only valid when the DISP:HEAD:XPO? response is 0.

DISP:HEAD:XINC and DISP:HEAD:XOR are used together to assign x-axis values to the
points returned by the DISP:DATA query. DISP:HEAD:XOR is the x-axis value for the first
point. Add DISP:HEAD:XINC to the first point’s x-axis value to get the value of the second
point. Add DISP:HEAD:XINC to the second point’s x-axis value to get the value of the third
point and so on.

Use DISP:HEAD:XUN? to determine units for the DISP-HEAD:XINC value.

7-39

Command Reference

DISP:HEAD:XNAMe? query

Cverlapped: no

Delayed result: no

Pass control required; no

Power-up state: "Frequency” (display A)
"Time" (display B)

Example Statement: ouTPUT 711;"DISPI:EEAD:XNAM?"

Query Syntax: DISPlayl<spec>1:HEADer XNAMe?
<spec>:i=" AT ['B]1|2

Returned Format: "{Frequency| Time}"<LF>< ~ END>

Description:

This query returns the name of the specified display’s x-axis. The name tells you whether
the displayed data is in the frequency or the time domain.

DISP:HEAD:XORigin? guery

Overlapped; no
Delayed result: no

Pass control required: no
Power-up state: 0

Example Statement: ouTpuT 711;"DISP:B:HEAD:XOR?"

CGuery Syntax: DISPlay]<spec>]:HEADer:XORigin?
<spec>:=":1AT [:B|1|2
Returned Formait: <value><LF><~END>
< value>::=a decimal number (NRf format)

Description:

This query returns the x value of the specified display’s first x-axis point. The value is only
valid when the DISP:HEAD:XPO? response is 0. The analyzer always returns 0 when
DISP:-HEAD:XPO? is sent.

DISP:HEAD:XOR and DISP:HEAD:XINC are used together to assign x-axis values to the
points returned by DISP:DATA?. See DISP:HEAD:XINC for more information.

Use DISP:HEAD:XUN? to determine units for the DISP:HEAD:-XOR value.

7-40

Command Reference

DISP.HEAD:XPOints? guery

Cveriapped: no

Delayed result: no

Pass control required: no
Power-up state: 0

Example Statement: ourpuT 711;"DISP2:HEAD:X2O?"

Query Syntax: DISPlayf<spec>]:HEADer:XPQints?
<spec>:u="1A" [:B|1{2

Returned Format: O0<LF><"~END>

Description:

The DISP:DATA query returns data from the specified display as a series of data points. The
DISP:HEAD:XPO query tells you how many x-axis values will be returned with each point,

Since each data point can only be made up of y-axis values, the DISP:HEAD:XPO query
always returns 0. You can calculate the x-axis values for each point using the values
returned by the DISP:HEAD:XINC and DISP:HEAD:XOR queries.

DISP:HEAD:XUNits? query

Overlapped: no

Delayed result: no

Pass control reguired: no
Power-up state: "HZ" (display A)
8" (display B)

Example Statement: ouTeur 711;"DISP:A:HEAD:XUN?®

Query Syntax: DISPlay{ <spec>]:HEADer:XUNits?
<gpec>:=":A" |[:B]1]2

Returned Format: "{HZ|S}"<LF><"~END>

Description:
This query tells you what units apply to the DISP:HEAD:XINC and DISP:HEAD:XOR values,

7-41

Command Reference

DISP:HEAD:YINCrement? guery

Cverlapped: no
Delayed result: no

Pass control required: no
Power-up state: variable

Example Statement: ourpur 711;"DISP1:HEAD:YINC?™

Query Syniax: DISPlay{ <gpec>HEADer: YINCrement?
<spec>u="A7 |:B|1]2

Beturned Format: <valte>»<LF><~END>

<value>::=a decimal number (NRf format)

Description:

This query returns the optimum y-axis value per division for the specified trace. The value
returned is the result of the following calculation:

(Ymax —~ Ymin)/8
Where:

Ymax = the y-axis value of the highest point on the trace
Ymin = the y-axis value of the lowest point on the trace

The value is returned in the current y-axis units,

DISP:HEAD:YNAMe? query

Overlapped: no

Delayed result: no

Pass controt required: no

Power-up state: “LogMag"® (display A)
"Real" (display B)

Example Statement: oureur 711;"DIsP:B:HEAD: YNAM?"

Guery Syntax: DISPlay]<spec>]:HEADer YNAMe?
<gpec>:="A"|:B]1|2

Returned Format: "{Delay | Imag|LinMag | LogMag|Phase|Real}"<LF> < ~ END>

Description:

This query returns the name of the specified display’s y-axis. The name tells you what kind
of coordinates are being used to display the data. (Coordinates are referred to as Trace Type
on the analyzer’s front panel.)

7-42

Command Reference

DISP:HEAD:YORigin? query

Cverlapped: no
Delayed result; no

Pass control required. no
Power-up state: variable

Example Statement: ouTpUT 711;"DISP2:HEAD:YOR?"

Guery Syntax: DISPlay[<spec>]1:HEADer:YORigin?
<gpec>i=" AT |:B|1]|2

Returned Format: <value><LF>< ~"END>

< value>::=a decimal number (NRf format)

Description:
This query returns the y-axis value of the lowest point on the gpecified trace.

DISP:HEAD:YPQOinis? query

Overiapped: no
Delayed result: no

Pass control required; no
Power-up state: 1

Example Statement: ourpur 711;"DISP:HEAD:YPO?"

Query Syntax: DISPlay[<spec>]:HEADer:YPQints?
<spec>:n="1A" |:B|1]2

Returned Format: 1<IF><"~END>

Description:

The DISP:DATA query returns data from the specified display as a series of data points. The
DISP:HEAD:YPO query tells you how many y-axis values will be returned with each point.

The analyzer always returns 1 in response to this query. This means that each point
returned by DISP:DATA? will consist of one y-axis value.

7-43

Command Refersnce

DISP:HEAD:YUNits? query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: "DBVRMS" (display A)
V (dispiay B)

Example Statement: ouTpuT 711;"DISP2:HEAD:YUN?"

Guery Syntax: DISPlay[<spec>]:HEADer:YUNits?
<gpec>u="1A" |:B|1]2

Returned Format: [<unit>]"<LF><~END>

<unit>::=V|V2|VRMS | VRMS2 | DB|DBM|
DBVRMS | DBVPK|DEG|RAD | V/RTHZ|
VRMS/RTHZ |V2/HZ | VRMS2/HZ |
DBVRMS/HZ | DBVPK/HZ | DBM/HZ|S

Description:

This query tells you what unit applies to the y-axis values returned from the
DISP:DATA query.

NOTE Not listed in Returned Format are the many special units that can result from math
operations or the application of engineering units. However, such units are also
valid responses.

DISP:LIMit[?] command/query

Description:

Disp:LIM is functionally equivalent to Disp:LIM:TABL. See the latter command for
more details.

7-44

Command Reference

DISP:LIM:BEEPer[?] _ command/query

Overlapped: no
Delayed resuit: no

Pass contral required: no
Power-up state; 0

Example Statements: ocurpur 711;"disp2:lim:beep off"
OUrPUT 711;"bisplay:A:Limit:Beeper On”
OUTPUT 711;"DISP:LIM:BEEP?"

Command Syntax: DISPlay|<spec>]:LIMit:BEEPer<sp> {OFF [ON 0|1}
<gpec>:u=":A" |:B|1}2

Guery Syntax: DISPlay[<spec>}:LIMit:BEEPer?
Returned Format: {0[1}<LF><"~END>

Description:

This command enables and disables the limit-test beeper. When the beeper is enabled
(DISP:LIM:BEEP ON) and the limit test fails, the analyzer beeps.

The sysi:em beeper must also be enabled (SYST:BEEP ON) if you want the analyzer to beep.
The query returns 0 if the limit beeper is off, 1 if it is on.

DISP:LIM:FAIL? query

Description:

Disp:LIM:FAIL is functionally equivalent to Disp:LIM:FAIL:DATA. See the latter query for
more details.

7-45

Command Reference

DISP:LIM:FAIL[:DATA]? guery

Overlapped: no
Delayed result: no

Pass controf required: no
Fower-up state: O

Example Statement: ourpurT 711;"DISP:B:LIM:FAIL?"

Query Syntax: DISPlay[<spec>]LIMit: FAIL[:DATA]?
<gpec>i= T AT |:Bi1iZ

Returned Format: <block data>

<block data> takes one of two forms, depending on whether the data is ASCII-encoded or
binary-encoded. Wher data is ASCil-encoded (DISP:LIM:FAIL:HEAD:AFOR ASC):

<block_data>n={<point>,}.. <point n><LF>< " END>
<point>n=<x value> <y _value> <y limit> <y flag>

These values are returned for the 1st through nth points (n is returned with
DISP.LIM:FAIL:HEAD:POINT)

All values are returned in the NRT format and are separated by commas.

When data is binary-encoded, (DISP:LIM:FAIL: HEAD:AFOR FP32 or
DISP:LIM:FAIL:HEAD:AFOR FP64):

<block _data>:=#<byte><length bytes>{<point>}...
<byte>::=one ASCIl-encoded byte that specifies the number of length bytes tc follow
<length bytes>:1=ASCIl.encoded bytes that specify the number of data bytes to follow
<point>:=<x_valuer <y value><y limit><y flag>

These values are returned for the 1st through nth points (1x is returned with
DISP:LIM:FATL.HEAD:POINY)

All values are returned as either 32-bit or 64-bit binary ficating point
numbers, depending on the setting of DISP:LIM:FAIL.HEAD:AFCGR,

Description:

When a limit table is coupled to a display that has limit testing enabled, the data in that
display is tested against limits specified in the table. Limits may be set for some or all of the
displayed data. This query responds with those points of the specified data that failed when
tested against the limits. Fach point consists of four values, which are defined as follows:

<x_value>::=x-axis value of the failed point
<y_value>:=y-axis value of the failed point
<y_limit>::=y limit specified for the failed point
<y_flag>::=fail flag (O=passed, 1=failed min, limit, 2=failed max, limit)

Limit tables are defined with the LIM: TABL:DATA command. They are assigned to a display
using the DISP:LIM:TABL command.

7-46

Command Reference

DISP:LIM:FAIL:HEADer selector

Description:

This command only selects the DISP:LIM:FATL:HEAD subsystem. Sending
DISP:LIM:FAIL:HEAD alone does nothing.

DISP:LIM:FAIL:HEAD:AFORmat[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: ASC

Example Statements: ourpuT 711;"DISP:A:LIM:FAIL:EEAD:AFOR FP64"
OUTPUT 711;"DISPLAY:B:LIMIT:FAIL:HEADER:AFORMAT ASCII™
OQUTPUT 711; DISP:LIM:FAIL:HEAD:AFOR?”

Command Syntax: DISPlay[<spec>]:LIMit: FAIL:HEADer: AFORmat<sp> {ASCii | FP32|FP64}
<gpec>u=":A" |:B|1]|2

Guery Syntax; DiISPlayl<spec>]:LIMit:FAIL: HHEADer;: AFORmat?
Returned Format: {ASC|FP32|FP64} <LF><~END>

Bescription:

Data returned in response to the DISP:LIM:FATL:DATA query can be ASCII-encoded or
binary-encoded. This command allows you to specify how each limit’s data should
be encoded.

When ASC is selected, data is sent as a series of values separated by commas. The values are
ASCII-encoded and are formatted as NRf decimal numbers.

FP32 and FP64 both specify binary encoding. When FP32 is selected, data is sent as a
series of values within a definite length block. The values are encoded as 32-bit binary
floating point numbers. When FP64 is selected, data is also sent as a series of values
within a definite length block. However, the values are encoded as 64-bit binary floating
point numbers.

For more information on data encoding and data transfer formats, see Chapter 4,
“Transferring Data.”

The query returns ASC, FP32, or FP64, depending on the option currently specified.

7-47

Command Refersnce

DISP:LIM:FAIL:HEAD:POINts? guery

Overlapped: no
Celayed result: no

Pass control required; no
Power-up state: 0

Example Statement: ourroT 711;"DISP1:LIM:FAIL:HEAD:POIN?"

Query Syntax: DISPlay] <spec>]:LIMit:FAIL: HEADer: POINts?
<gpec>:u=":A7 :B|1|2

Returned Format: <value>»<LF>< ~END>

<value>:=an integer (NR1 format)

Description:

This query tells you how many points in the specified display failed when tested against a
limit table.

To define limit tables, use the LIM:TABL:DATA command. To assign limit tables to one of
the displays, use the DISP:LIM:TABL command. To read the values of the failed points, use
the DISP:LIM:FAIL:DATA query.

DISP:LIM:LINE[?} command/query

Overlapped: no
Delayed result; no

Pass control required: no
Power-up state: 0

Example Statements: ourpur 711;"DispsLim:Line On"
OUTPUT 731);"DISPLAY1:LIMIT:LINE 0T
OUTPUT 711;"DISP:LIM:LINE?"

Command Syntax; DISPlay[<spec>]:LIMit:LINE<sp> {OFF|ON| 0|1}
<gpec>u="A7 [1B|1]|2

Query Syntax: DISPlay{ <spec>}:LIMit:LINE?
Returned Format: {0{1}<LF><"~END>
Description:

This command enables the specified display to show limit lines. These limit lines define the
bounds within which you want the trace data to fall.

The query returns 0 if the specified display is not enabled to show limit lines, 1 if it is.

7-48

Command Reference

DISP:LIM:STATe[7?] command/query

Overlapped: no

Delayed result: no

Pass controf reguired: no
Power-up state: 0

Example Statements: ourpur 711;"DISP:A:LIM:STAT OFF"
QUTPUT 71l;"Display2:Limit:State 17
QUTPUT 711; disp:b:lim:stat?"

Command Syntax: DISPlay[<spec>]:LIMit:3TATe<sp>{OFF |ON|0]1}
<spec>u=":A" :B|1}2

Query Syntax; DiISPlayl <spec>]:LIMit:STATe?
Heturned Format: {0]1}<LF><"~END>

Description:
This command enables limit testing for the specified display. ON and 1 enable limit testing;
OFF and 0 disable limit testing,

While limit testing is enabled for a particular display, the data on that display is tested
against the limits each time the display is updated. When display A data fails the test, bit 8
of the Data Integrity Condition register is set. When display B data fails the test, bit 9 of the
Data Integrity Condition register is set.

The query returns 0 if limit testing is not enabled for the specified display, 1 if it is.

7-49

Command Reference

DISP:LIM[: TABLe][?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 1 (display A)
2 (dlisplay B)

Example Statements: ouTpur 711;"pisp2:Lim 1"
OUTPUT 711;"DISPLAY:A:LIMIT:TABLE 8"
OUTPUT 711;"DISP:LIMZ"

Command Syntax: DISPlayl<spec>1:LIMit{: TABLel<sp> <table_number>

<spec>n="A7 [:B|1|2
<table number>::=a single integer 1 through 8 (NRf format)

Query Syntax: DISPlayl<spec>]:LIMit[: TABLe]?

Returned Format: <valie><LF>< ~END>

<value>=an integer (NR1 format)
Description:
This command allows you to couple one of the eight limit tables to the specified display.

If limit testing is enabled, the displayed data is automatically tested against the limit table
you specify with this command. The data is tested each time the display is updated.

The query response indicates which limit table is coupled to the specified trace.

DISP:LIM:TEST? query

Description:

Disp:LIM:TEST is functionally equivalent to Disp:LIM: TEST:DATA. See the latter query for
more details.

7-50

Command Reference

DISP:LIM:TEST[:DATA}? query

Qverlapped: no
Delayed result: no

Pass controf required: no
Power-up state: 0

Example Statement: ouTpuT 711;"DISP:A:LIM:TEST?"

Query Syntax: DISPlayl<spec>1:LIMit: TEST[:DATA]?
<gpec>i=":A7 [:B|1|2

Returned Format: <block_data>

<block_data> takes one of two forms, depending on whether the data is ASCII-encoded or
binary-encoded. When data is ASClIl-encoded (BISP:LIM:FATL-HEAD:AFOR ASC):

<block data>:={<point>}.. . <point n>«<LF><~END:>
<point>u=<x_value>,<y_value> <y limit> <y flag>

These values are returned for the 1st through nth points (n is returned with
DISP:LIM.FATL:HEAD:POIN?)

All values are returned in the NRf format and are separated by commas.

When data is binary-encoded, (DISP:LIM:FAIL:HEAD:AFOR FP32 or
DISP:LIM:FAIL:HEAD:AFOR FP64):

<block_data>:=#<byte> <length bytes>{<point>}...
<byte> ::=one ASCIl-encoded byte that specifies the number of length bytes to follow
<length_bytes>::=ASClH-encoded bytes that specify the number of data bytes to follow
<point>:=<x value><y_value> <y_limit><y flag>

These values are returned for the lst through nth points {n is returned with
DISP:LIM:FAIL:HEAD:POIN?)

All values are returned as either 32-bit or 64-bit binary floating point
numbers, depending on the setting of DISP:LIM:FAIL:HEAD:AFOR.

Description:

When a limit table is coupled to a display that has limit testing enabled, the data in that
display is tested against limits specified in the table. Limits may be set for some or all of the
displayed data. This query responds with all points of the specified data that were tested
against limits, even if they did not fail those limits. Each point consists four values, which
are defined as follows:

<x_value>:=x-axis value of tHe tested point
<y _value>:=y-axis value of the tested point
<y limit>:=y limit specified for the tested point
<y_flag>:=fail flag (O=passed, 1={failed min. limit, 2=failed max. limit)

Limit tables are defined the LIM:TABL:DATA command. They are assigned to a display
using the DISP:LIM:TABL command.

7-51

Comrmand Reference

DISP:LIM:TEST-HEADer selector

Description:

This command only selects the DISP:LIM:TEST:HEAD subsystem, Sending
DISP.LIM:TEST:HEAD alone does nothing.

DISP:LIM:TEST:-HEAD:AFORmat[?] command/query

Cvertapped: no

Delayed result: no

Pass control required: no
Power-up state: ASC

Example Statements: ouTpuT 711;"DISP1:LIM:TEST:HEAD:AFOR ASCii"
OUTPUT 711;"display:b:limit:test:header:aformat f£fp64”
OUTPUT 711;"DISP:LIM:TEST:HEAD:AFOR?”

Command Syntax: DISPlay[<spec>}:LIMit: TEST:HEADer:AFORmat<sp>
{ASCii|FP32|FP64}

<spec>iu=":AT |:B|1|2

Query Syntax: DISPlay[<spec>]:LIMit: TEST:HEADer: AFORmat?
Heturned Format: {ASC|FP32|FP64} <LF><"END>

Description:

Data returned in response to the DISP:LIM: TEST:DATA query can be ASCII-encoded or
binary-encoded. This command allows you to specify how each digplay’s data should
be encoded.

When ASC is selected, data is sent as a series of values separated by commas. The values are
ASCII-encoded and are formatted as NRf decimal numbers.

FP32 and FP64 both specify binary encoding. When FP32 is selected, data is sent asa
series of values within a definite length block. The values are encoded as 32-bit binary
floating point numbers. When FP64 is selected, data is also sent as a series of values
within a definite length block., However, the values are encoded as 64-bit binary floating
point numbers.

For more information on data encoding and data transfer formats, see Chapter 4,
“Transferring Data.”

The query returns ASC, FP32, or FP64, depending on the option currently specified.

7-52

Comrpand Reference

DISP:LIM:TEST:-HEAD:POINts? query

Overlapped: no
Delayed result: no

Pass control required; no
Power-up state: 0

Example Statement: oUTPUT 711;"DISP:LIM:TEST:HEAD:POIN?"

Query Syntax: DISPlayf<spec>]:LIMit: TEST:HEADer: POINts?
<gpec>u~ A7 [:Bi1|2

Feturned Format: <value><LF>< ~END>

<value>=an integer (NR1 format)

Description:

This query telis you how many points in the specified display were tested against a
limit table.

To define limit tables, use the LIM:TABL:DATA command. To assign limit tables to one of
the displays, use the DISP:LIM:TABL command. To read the values of the tested points, use
the DISP:LIM:FAIL:DATA query.

DISP:X selector

Description:
This command only selects the DISP:X subsystem. Sending DISP:X alone does nothing.

7-53

Command Rafsrence

DISP. X:APERture[?] command/guery

Overlapped: no
Delayed result: no

Pass control required no
Fower-up state: 0.005

Example Statements: ouTpuT 711;"DISP:B:X:APER 0.01"
OUTPUT 711;"DISPLAYL:X:APERTURE 16PCT”
OUTPUT 711:"Disp:BeX:hper?”

Command Syntax: DISPlayf <spec>1:X: APERture<sp> { { <percent>PCT} | <fraction>}

<spec>u=":A7[:Bl1]2
<percent>u=5]1|2|4|8]16
<fraction>:=0.005]0.0110.0210.04]0.68)0.16

Cuery Syntsx DISPlay[<spee>]:X:APERture?

Returned Format: <fraction><LF»>< ~END>

<fraction>::=a decimal number (NE2 format)

Description:

When group delay coordinates are used (DISP:Y:AXIS GDEL), you must select a
phase-smoothing aperture. The greater the aperture you select, the greater will be the
smoothing effect on the displayed data. This command allows you to select an aperture for
the specified display.

The aperture is entered as a percentage or as a fraction of the current frequency span.
DISP:X:APER 0.01 is the same as DISP:X:APER 1PCT. In either case, the value you send is
rounded to the nearest allowable percentage.

The query response indicates which aperture is currently selected for the specified trace.
The value is returned in the fractional form.

7-54

Command Reference

DISP:X:SPACiIng[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: LIN

Example Statements:
QUTPUT 711;"Disp2:X:Spac Lin"
QUTPUT 711;"DISPLAYIsX:5PACING LOGARITHMIC"
QUITPUT T11;"DISP:iXs5PACE"

Command Synitax: DISPlayl[<spec>]:X:SPACing<sp> {LINear | LOGarithmic}
<gpec>u=":A" |:B|1|2

Query Syniac DISPlay[<spec>]:X:SPACing?
Heturned Format: {LIN|LOG}<LF><"~END>

Bescription:

Use this command to specify whether the spacing of data points along the x-axis should be
linear or logarithmic.

The query returns LIN if linear spacing is selected and LOG if logarithmic spacing is selected
for the specified digplay.

DISPI:Y] selector

Description:
This command only selects the DISP:Y subsystem. Sending DISP:Y alone does nothing.

7-55

Command Reference

DISP[.Y1:AXIS[?] command/query

Cverlapped: no

Delayed result: no

Pass control required: no
Power-up state: LOGM (display A)
REAL (display B)

Example Statements: ouTpuT 711;"DISP:AXIS LINM"
OUTPUT 711;"Display2:Y:Axis Magnitude®
OUFPUT 711;"disp:axis?”

Command Syntax: DISPlay[<spec>][:Y]:AXIS <sp><axis>

<spec>u=":A" |:B|1|2
<axis>:=GDELay | IMAGinary | LINMagnitude | LOGMagnitude | PHASe | REAL

Query Syntax: DISPlayl<spec>][:Y}:AXIS?
Returned Format: {GDEL|IMAG|LINM|LOGM |PHAS |REAL}<LF><"~END>

Description:

This command lets you specify the coordinate system to be used for the specified display.
(Coordinate systems are referred to as Trace Types on the analyzer’s front panel.)

DISP:Y:AXIS GDEL specifies the group delay coordinate system, which uses time on the
y-axis and frequency on the x-axis. Group delay is related to phase, but shows phase delays
in time rather than degrees of phase shift. The analyzer uses a smoothing aperture to define
the resclution of the group delay display. This coordinate system is not allowed for time
records. See DISP:X:APER for more information.

DISP:Y:AXIS IMAG specifies the imaginary coordinate system, which uses imaginary
numbers for the y-axis and frequency or time for the x-axis. This coordinate system shows
the imaginary component of complex data at each point along the x-axis.. If the data is real
rather than complex, a y value of 0 is displayed for all x-axis points.

DISP:Y:AXIS LINM specifies the linear magnitude coordinate system, which uses magnitude
for the y-axis and frequency or time for the x-axis. In addition, the y-axis scale is spaced
linearly. DISP:Y:AXIS LOGM specifies the logarithmic magnitude coordinate system, which
also uses magnitude for the y-axis and frequency or time for the x-axis. However, the y-axis
scale is spaced logarithmically.

DISP:Y:AXIS PHAS specifies the phase coordinate system, which uses phase for the y-axis
and frequency or time for the x-axis.

DISP:Y:AXIS REAL specifies the real coordinate system, which uses real numbers for the
y-axis and frequency or time for the x-axis. This coordinate system shows real data or the
real component of complex data at each point along the x-axis.

The query response tells you which scaling system is currently selected.

7-56

Command Reference

DISP[.¥]:SCALe selector

Description:

This command only selects the DISP:Y:SCAL subsystem. Sending DISP:Y:SCAL alone
does nothing.

DISPYI:SCAL:AUTO selector

Description:

This command only selects the DISP:V:SCAL:AUTO subsystem. Sending
DISP:¥:8CAL:AUTO alone does nothing.

DISP[:Y]:SCAL:AUTO:SINGIle command

Qverlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statements: ourpuT 711;"DISP:A:SCAL:AUTO:SING"
OUTPUT 711;"Display2:Y¥:Scale:Auto:Single”

Command Syntax: DISPlayl <spec>][:Y]:SCALe:AUTO:SINGle
<spec>u=":A"[:B|1]|2

Description:

This command performs a single autoscale on the specified display. This optimizes y-axis
scaling for that display.

7-57

Command Reference

DISP[:Y]:SCAL:CENTer[?] command/query

Overlapped: no
Delayed result: no

Pass control required; no
Power-up state: variable

Example Statements: ourpuT 711;"displiscal:cent Sv"
QUTPUT 711;"DISPLAY:B:Y:SCALE:CENTER -40 DBM"
QUTPUT 711;"bisp:B:Scal:Cent?”

Command Syniax; DISPlay[<spec>][Y]:5CALe:CENTer<sp> <value>[<unit>]
<spec>n="A7T [:B|1|2
<value> =a decimal number (NRf format)

<unit>options are listed in Appendix A.

Query Syntax: DISPlay[<spec>}[:Y]:SCALe: CENTer?

Returned Format: <value»<LF>< ~END:>

<value>:=a decimal number (NRf format)

Description:

This command allows you to define the center of a display’s vertical scale. Changing the
vertical-per-division value (DISP:Y:SCAL:DIV) after using this command will alter the top
and bottom points of the display while keeping the center point fized.

The unit you can send with this command depends on two things:

¢ The measurement data being displayed

* The coordinate system (also called trace type) being used to display the
measurement data

Send the TRAC:RES query to determine which measurement data is being displayed and the
DISP:Y:AXIS query to determine which trace type is being used. You can then refer to
Appendix A to determine which units you can send with this command.

NOTE if you do not include a <unit>> specifier when you send this command, the
analyzer assumes a default unit. This default unit is not necessarily the current unit
used for the vertical axis. Default units are specified in Appendix A.

The query returns the center point of the display’s vertical scale. Note that only a value is
returned; units are not appended. Units are returned by the DISP:Y:SCAL:UNIT query.

7-58

Command Reference

DISP[:Y]:SCAL:DIVisioni?] command/query

Overlapped: no
Delayed result: no

Pass conirol required: no
Power-up state: variable

Example Statemenis: ourpur 711;"DISP:SCAL:DIV 5°
QUTPUT 711;"DISPLAY1:Y:SCALE:DIVISION 107
QUTPUT 711;"displiscal:div?”

Command Syntax: DISPlay[<spec>][:¥]:SCALe:DIVision <sp > < value>[<unit>]

<gpec>u=":A" 1:B[1]|2

<value>:=any decimal number x, where .001 = x < 100 {(when the display units are
referenced to dB)

any decimal number 2, where 1 E-36 = x = 1 K36 (when the display units
are not referenced to dB)

<unit>options are listed in Appendix A,

Query Syntax: DISPlay[<spec>{:Y]:SCALe:DIVision?

Returned Format: <value><LF>< ~END>

< value>: =a decimal number (NRf format)

Description:
Graticule lines divide a display’s vertical axis into eight divisions. Use this command to
define the increment between graticule lines on the specified display’s vertical axis.

The unit you can send with this command depends on two things:

* The measurement data being displayed

¢ The coordinate system (also called trace type) being used to display the
measurement data

Send the TRAC:RES query to determine which measurement data is being displayed and the
DISP:Y:AXIS query to determine which trace type is being used. You can then refer to
Appendix A to determine which units you can send with this command.

NOTE If you do not include a <unit> specifier when you send this command, the
analyzer assumeas a default unit. This default unit is not necessarily the current unit
used for the vertical axis. Default units are specified in Appendix A.

The query returns the current increment between specified display’s graticule lines. Note
that only a value is returned; units are not appended.

7-59

Command Reference

DISPL.Y]:SCAL:REFerence[?] command/qguery

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: INP

Example Statements: ouTrur 711;"DISP:A:SCAL:REF CENT”
OUTPUT 711;"Display:B:Y:ScalesReference Start"
OUTPUT 711;“DISPZ:SCAL:REF?"

Command Syntax: DISPlay[<spec>}[:Y1:SCALe:REFerence <sp>
{CENTer|STARt|STOP [INPut}

<spec>tu=":A"|:B}1|2

Guery Syntax: DISPlay[<spec>][:Y]:8CALe: REFerence?
Returned Format: {CENT|STAR|STOP|INP}<LF>< ~END:>

Descrintion:

This command lets you use one of three parameters to select the top, center, or bottom of the
specified display as a vertical axis reference point. STOP selects the top, CENT selects the
center, and STAR selects the bottom. The reference point selected with this command
remains fixed when the vertical-per-division value (DISP:Y:SCAL:DIV) is changed.

A fourth parameter, INF, enables automatic reference tracking. Automatic reference
tracking selects vertical scaling values based on the input range of the channel supplying the
measurement data.

Your selection of trace type and measurement data affects reference level tracking. When
the logarithmic magnitude trace type is selected, the top reference is kept at the input range.
When the linear magnitude trace type is selected, the bottom reference is kept at zero,
When the real or imaginary trace types are selected, the center reference is set to 0 (zero).
In addition, when linear magnitude, real, or imaginary trace types are selected, the
vertical-per-division value is changed so that the top reference is = the input range.

(See the DISP:Y:AXIS command for information on specifying the trace type.)

Reference level tracking is not allowed for the phase (DISP:Y:AXIS PHAS) and group delay
(DISP:Y:AXIS GDEL) trace types. It is also not allowed for frequency response, ccherence,
and user-defined measurement data. (See TRAC:RES for information on measurement data).

The vertical axis reference point is changed and automatic reference tracking is disabled by
the following commands: DISP::SCAL:CENT, DISP:Y:SCAL:STAR, and
DISP:Y:SCAL:STOP. Reference level tracking is also disabled by these commands:
DISP:¥:SCAL:AUTO:SING and DISP:YV:SCAL:DIV. (When DISP:Y:AXIS is LOGM,
DISP:¥:SCAL:DIV might not disable reference level tracking.)

This command does not allow you to specify a value for the reference point. This must be
done with the DISP:Y:SCAL:CENT, DISP:Y:SCAL:STAR, or DISP:Y:SCAL:STOP command.

The query response tells you what kind of vertical-axis scaling is currently selected.

7-60

Cornmand Reference

DISP[.Y]:SCAL:STARt[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: variable

Example Statements: ouTpuT 711;"Disp:Scal:Star 107
QUTPUT 711;"display2:¥:scale:start -40dBVrms”
OUTPUT 711;"DISP:A:SCAL:STAR?"®

Command Syntax: DISPlay[<spee>][:Y]:SCALe:STARt<sp> < value>[<unit>]
<spec>u=":AT |:B}1[2
<value>::=a decimal number {NRf format)

<unit>options are listed in Appendix A

Guery Syntax: DISPlay[<spec>][:Y]:SCALe:STARL?

Beturned Format: <value>»<L¥>< ~END>

<value>:=ga decimal number (NRf format)

Description:

This command allows you to define the bottom of a display’s vertical scale. Changing the
vertical-per-division value (DISP:YV:SCAL:DIV) after using this command will alter the top
and center points of the display while keeping the bottom point fixed.

The unit you can send with this command depends on two things:

¢ The measurement data being displayed

¢ The coordinate system (also called trace type) being used to display the
measurement data

Send the TRAC:RES query to determine which measurement data is being displayed and the
DISP:Y:AXIS query to determine which trace type is being used. You can then refer to
Appendix A to determine which units you can send with this command.

NOTE If you do not include a <unit> specifier when you send this command, the
analyzer assumes a default unit. This default unit is not necessarily the current unit
used for the vertical axis. Default units are specified in Appendix A.

The query returns the bottom point of the display’s vertical scale. Note that only a value is
returned; units are not appended. Units are returned by the DISP:Y:SCAL:UNIT query.

7-61

Command Reference

DISPL:Y]:SCAL:STOP[?] command/query

Overlapped. no
Delayed result: no

Pass control required: no
Power-up state: varfable

Example Statements: ourpur 711; "DISP:A:SCAL:sTOP 1*
: QUTPUT 711; "display2:Y¥:scale:stop 10dbvrms™
QUTPUT 711;"Disp:Scal:Stop?”

Command Syniax: DIgPlayl <spec>1[:Y]:SCALe:STOP <sp > < value>>[<unit >}

<gpec>i=":AT |:B|1|2
< value>:=a decimal number (NRf format)

<unit>options are listed in Appendix A

Query Syntax: DISPlayl<spec>]1[:YI:SCALe:STOP?

Returned Format: <value><LF>«< ~END:>

<value>::=a decimal number (NRf format)

Description:

This command allows you to define the top of a display’s vertical scale. Changing the
vertical-per-division value (DISP:Y:8CAL:DIV) after using this command will alter the center
and bottom points of the display while keeping the top point fixed.

The unit you can send with this command depends on two things:

* The measurement data being displayed

*» The coordinate system (also called trace type) being used to display the
measurement data

Send the TRAC:RES query to determine which measurement data is being displayed and the
DISP:Y:AXIS query to determine which trace type is being used. You can then refer to
Appendix A to determine which units you can send with this command.

NOTE if you do not include a <unit> specifier when you send this command, the
analyzer assumes a default unit. This default unit is not necessarily the current unit
used for the vertical axis. Default units are specified in Appendix A.

The query returns the top point of the display’s vertical scale. Note that only a value is
returned; units are not appended. Units are returned by the DISP:Y:SCAL:UNIT query.

7-62

Command Reference

DISP[:Y]:SCAL:UNITs[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: "DBVRMS" (display A)
"W {display B)

Example Statements: ourrur 711;"Disp:Scal:Unit "“Deg"""
QUTPUT 711:"DISPLAYZ:Y:SCALE:UNITS ‘DBVPR'"
OUTPUT 711;"displi:scal:unit?”

Command Syntax: DISPlay[<spec>][:Y1ESCALe: UNITs<sp>{"|"}<unit>{"{"}
<spec>u="AT [:BIHI2
<unit>options are listed in Appendix A

Query Syntax: DISPlayl <spec>][:Y}:SCALe:UNITs?
Returned Format: fwunit>"<LF>< ~END>
Description:

Use this command to select a unit for the specified display’s y-axis.

The unit you can send with this command depends on two things:

* The measurement data being displayed

¢ The coordinate system (also called trace type) being used to display the
measurement data

Send the TRAC:RES query to determine which measurement data is being displayed and the
DISP:Y:AXIS query to determine which trace type is being used. You can then refer to
Appendix A to determine which units you can send with this command.

The query returns the y-axis unit currently being used for the specified trace.

7-63

Command Reference

7-64

FREQuency

Command Reference

subsystem

Description:

Commands in this subsystem are used to define the band of frequencies you want to analyze,

NOTE

The amplitude accuracy of the HP 35660A is specified to a maximum of 102.4 kHz
it the one-channel measurement mode and 51.2 kHz in the two-channe! mode,
However, commands in this subsystem aliow you to define the band of frequencies
in such a way that frequencies greater than the maximums are displayed. The

amplitude accuracy of frequencies exceeding the specified maximums is
not guaranteed.

7-65

Command Reference

FREQ:CENTer[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: 51200

Example Statements: ocurpur 711;"FREQ:CENT 100"
OUTPUT 711;"FREQUENCY:CENTER 98KHZ"
OUTPUT 711;"Freqg:Cent?"

Command Syntax: FREQuency:CENTer <sp><value>{<unit>]

<value>:=any number between 0 and max_disp freq
Send numbers in the NRf format.

max_disp_freq::=115,000 for 1-channel measurements,
57,500 for 2-channel measurements

<unit>n="HZ ™ |KHZ
Query Syniax: FREQuency:CENTer?

Heturned Format: <value><LF>< ~END>

<value>::=a decimal number (NRf format)

Description:

This command specifies the center of the band of frequencies you want to analyze. The
values of FREQ:CENT and FREQ:SPAN completely define the band. When you send this
command, the value of FREQ:STAR is automatically adjusted (if necessary) so that the
following formula is true:

FREQ:STAR=FREQ:CENT-(FREQ:SPAN/2)

The same formula continues to adjust the value of FREQ:STAR each time FREQ:CENT or
FREQ:SPAN is changed. This remains true until you explicitly set the value of FREQ:STAR
or until you send FREQ:REF STAR, at which point FREQ:CENT becomes the value that is
automatically adjusted.

You can either use numbers or one of three nonnumeric parameters to set the value of
FREQ:CENT. The nonnumeric parameters are:

¢ UP -increases the current value of FREQ:CENT by the amount specified in
FREQ:CENT:STEP

¢ DOWN - decreases the current value of FREQ:CENT by the amount specified in
FREQ:CENT:STEP

* (MARK[:A[:BI:VAL) - sets FREQ:CENT to the frequency of the main marker,
even when the marker reference is enabled

The query returns the current center of the band of frequencies being analyzed. The value is
returned in He.

7-66

Command Reference

FREQ:CENT.STEP[?] command/query

Overlapped: o

Delayed result: yes

Pass control required: no
Power-up state: 2000

Example Statements: ourruT 711;"Freq:Cent:Step 5"
OUTPUT 711;"frequency:center:step 2khz"
OUTPUT 711;"FREQ:CENT:STEP?"

Command Syntax: FREQuency:CENTer:STEP <sp> < value>[<unit:>]

<value>:=any x, where 0 £ x = 61.2 kHz for a one-channel measurement
any x, where 0 £ x < 25.6 kHz for a two-channel measurement
<unit>u="HZ™ |KHZ

1

Query Syntax: FREQuency:CENTer:STEP?

Returned Format: <value><LF>< ~END>

<value>:=a decimal number (NEf format)

Description:

FREQ:CENT and FREQ:STAR can both be increased or decreased by a certain amount. The

amount, called a step, is defined by this command.

You can either use a number or the parameter (MARK[:A|:B]:VAL) to set the step.
(MARK:VAL) sets the step to one of two values depending on the marker mode selected:

» When MARK:X:MODE is NORM, (MARK:VAL) sets the step to the value of the

main marker.

¢ When MARK:X:MODE is DELT, (MARK:VAL) sets the step to the difference

hetween the marker reference value and the main marker value.

The query returns the step currently specified. The value is returned in Hz.

7-67

Command Reference

FREQ:REFerence commands/query

Overlapped: no
Delayed Result: no

Pass control required: no
Power-up state: STAR

Example Statements: outpuT 711; "freq:ref star®
CUTPUT 711; “FREQUENCY:REFERENCE CENTER"
oUTPUT 7i1l; "Freg:Ref?®

Command Syntax: FREQuency:REFerence <sp> {CENTer |STAR:}
Query Syntax: FREQuency:REFerence?
Returned Format: {CENT|STAR} <LF>» < ~END>

Description:

When you change the analyzer’s frequency span or time record length, the value of either
FREQ:CENT or FREQ:STAR. must be adjusted. This command lets you specify which of the
two values should be held constant when such a change occurs.

If FREQ:REF is CENT, FREQ:CENT is held constant and FREQ:STAR is adjusted to make
the following formula true:

FREQ:STAR = FREQ:CENT—(FREQ:SPAN/2)

If FREQ:REF is STAR, FREQ:STAR is held constant and FREQ:CENT is adjusted to make
the following formula true:

FREQ:CENT = FREQ:STAR + (FREQ:SPAN/2)

7-68

Command Reference

FREQ:SPANI[?] command/query

Overlapped: no

Delayed result: yes

Pass condrol required: no
Power-up state: 102400

Example Statements: ourpuT 711;"Freq:Span 100"
OUTPUT T711;"¥Frequency:Span 10kHz"
QUTRPUT 71i;"freg:span?”

Command Syniax: FREQuency:SPAN <sp> <value>[<unit>]

<value>::=any x, where x=msax_span/2n
max_sgpan::=102Z,400 for one-channel measurements,
51,200 for two-channel measurements
n:=an integer from 0 through 19
<upit>n="HZ~ |KHZ

Guery Syntax: FREQuency:SPAN?

Returned Format: <value>»<LF><~END>

<value>::=a decimal number (NRf format)

Description:

This command specifies the width of the band of frequencies you want to analyze. The value
of FREQ:SPAN is used together with either FREQ:CENT or FREQ:STAR to completely
define the band.

When you send this command, two other values are adjusted. SWE:TIME is adjusted so the
following formula is true:

SWE:TIME=400/FREQ:SPAN

The other value that is adjusted is either FREQ:CENT or FREQ:STAR, depending on which
of the two values was last set. The value last set remains fixed while the other is adjusted to
make the following formula true: '

FREQ:SPAN =(FREQ:CENT-FREQ:STAR) x2

7-68

Command Reference

You can either use numbers or one of three nonnumeric parameters to set the value of
FREQ:SPAN. The nonnumeric parameters are:

@

UP - increases FREQ:SPAN span to the next largest allowable value
DOWN - decreases FREQ:SPAN span to the next smallest allowable value

(MARK[:A|:B1:VAL) - sets FREQ:SPAN to the closest allowable span that
satisfies the following formula:

FREQ:SPAN=(MARK:VAL)

(MARK:VAL) will equal one of two values, depending on the marker mode
selected. When MARK:X:MODE is NORM, (MARK:VAL) equals the value of the
main marker. When MARK:X:MODE is DELT, (MARK:VAL) equals the absolute
value of the difference between the marker reference value and the main
marker value,

The query returns the width of the band of frequencies currently being analyzed. The value
is returned in Hz.

FREQ:SPAN:FULL

Example Statements: ovreur 711;“FREQ:SPAN:FULL"

QUTPUT 711;"Frequency:Span:Full”

Command Syntax: FREQuency:SPAN:FULL

Description:

This command sets the start frequency (FREQ:STAR) to 0 Hz and the frequency span
(FREQ:SPAN) to the largest allowable value. For one-channel measurements, the largest
allowable span is 102.4 kHz. For two-channel measurements, the largest allowable span
is 51.2 kHz.

7-70

command

Overlapped: no

Delayed result: yes

Pass cortrol required: no
Power-up state: not applicable

Command Reference

FREQ:STARt[?] command/query

Overiapped: no

Defayed result: yes

Pass control required; no
Power-up state: 0

Example Statements: ourpur 711;"freqg:star 10"
OUTPUT 711; "FREQUENCY:START S50KHZ"
OUTPUT 711; "FREQ:STAR?™

Command Syntax: FREQuency:STARt<sp> <value>[<unit>]

<value>:=any x, where {§ £ x £ max_disp_freq - (min_span/2)
Send numbers in the NRf format.
max_disp_freq::=115,000 Hz for one-channel measurements,
57,600 Hz for two-channel measurements
min_span::=0.1953 Hz for one-channel measurements
0.09766 Hz for two-channel measurements
<unit>n="HZ~ |KHZ

Query Syniax: FREQuency:STARt?

Returned Format: <value>»<LF><~END>

<value>: =3 decimal number (NRf format)

Cescription:

This command specifies the start of the band of frequencies you want to analyze. The values
of FREQ:STAR and FREQ:SPAN completely define the band.

The value you send with this command also determines whether the analyzer is in the
baseband er zoom mode measurement mode. When FREQ:STAR is ¢ Hz, the analyzer is in
baseband mode and time-domain data is real. When FREQ:STAR is anything other than 0
Hz, the analyzer is in zoom mode and time-domain data is complex.

When you send this command, the value of FREQ:CENT is automatically adjusted
(if necessary) so that the following formula is true:

FREQ:CENT=FREQ:STAR+(FREQ:SPAN/2)

The same formula continues to adjust the value of FREQ:CENT each time FREQ:STAR or
FREQ:SPAN is changed. This remains true until you explicitly set the value of FREQ:CENT
or until you send FREG:REF CENT, at which point FREQ:STAR becomes the value that is
automatically adjusted.

7-71

Command Reference

You can either use numbers or one of three nonnumeric parameters to set the value of
FREQ:STAR. The nonnumeric parameters are:

¢ UP ~increases the current value of FREQ:STAR by the amount specified in
FREQ:CENT:STEP

e DOWN - decreases the current value of FREQ:STAR by the amount specified in
FREQ:CENT:STEP

* (MARK[A|:BI:VAL) — sets FREQ STAR to the frequency of the main marker,
even when the marker reference is enabled

The query returns the current start of the band of frequencies being analyzed. The value is
returned in Hz,

7-72

Command Reference

GPIB subsystem

Description:

Special fields on the analyzer’s screen allow front-panel operators to monitor certain HP-IB
functions. Commands in this subsystem are used to enable and disable display of these fields.

GPRIB:LEDSI?] command/query

Overlapped: no

Delayed result, no

Pass control required: no
Power-up state: 0

Example Statements: outpur 711;"Gpib:Leds 0"
OUTPUT 711;"gpib:leds on®
CUTPUT 711;"GPIB:LEDS?T"

Command Syntax: GPIB:LEDS<sp>{OFF|ON|0|1}
Query Syntax: GPIB:LEDS?
Returned Format: {01} <lF><~END>

Description:
Use this command to enable the display of the four HP-IB status indicators. When enabled,
the indicators will appear in the upper-right corner of the analyzer’s screen.

The indicators are Rmt, Tlk, Lin, and Srq. Rmt brightens when the analyzer is under the
control of an external controller. Tlk brightens when the analyzer is addressed to talk. Lin
brightens when the analyzer is addressed to listen. Srq brightens when the analyzer has
issued a service request.

The query returns 0 if the status indicators are off, 1 if they are on.

7.73

Command Reference

GPIB:MNEMonic[?] " command/query

Overlapped: no

Delayed result; no

Pass control required: no
Power-up state: OFF

Example Statements! ouTpuT 711;"GPIB:MNEM ECHO"
OUTPUT 711:"GPIBiMNEMONIC SCROLL™
ouTeyr 711;"Gpib:Mnem?"”

Command Syntax: GPIB:MNEMonic<sp>{ECHO | OFF |SCRoll}
Cluery Syntax: GPIB:MNEMonic?
Returned Formait: {ECHG|OFF|5CR}<LF><"END>

Description:

A field in the upper-left portion of the analyzer’s screen can be enabled to provide
information on HP-IB cornmands. Use this command to enable the information field and to
specify the type of HP-IB information you want displayed. The options are:

o OFY ~ This disables the information field.

¢ ECHO - This enables the information field and specifies that HP-IB
programming mnemonics should be echoed to the field in response to front-panel
key presses or to bus commands, ECHO is used most often to determine which
HP-IB programming mnemonic is equivalent to a particular front-panel
key sequence.

¢ SCR - This enables the information field and specifies that characters being sent
to the analyzer over the bus should be scrolled into the field. As new characters
are roceived, they are added to the right of the field. Old characters are scrolled
off the screen to the left. When the analyzer’s command parser recognizes an
error, an all-white character is placed in the field. The all-white character is
placed just after the character on which the error was recognized.

NOTE HP-IB transfers are much slower when SCR is selected. It should only be used
when you are debugging programs or checking the integrity of bus transfers.

The query response tells you which option is currently selected.

7-74

Command Refererice

INITialize subsystem

Description:
The single command in this subsystem is used to start, pause, and continue a measurement.

INIT:STATe[?] command/query

Overlapped: yes
Delayed result: no

Pass control required: no
Power-up state: RUN

Example Statemenis: ouTpuT 711;"Init:Stat Run"
OUTPUT 71l;"Initialize:State Start”
CUTPUT 71i;"init:stat?”

Command Syntax: INITialize:STATe<sp> {PAUSe |RUN |STARt}
Query Syntax: INITialize:STATe?
Returned Format: {PAUS|RUN}<LF>< ~END>

Description:
This command is used to start, pause or continue a measurement.

NOTE INIT:STAT STAR and INIT:STAT RUN are considered to be pending overlapped
commands whenever bit 7 of the Device Status condition register is setto 1. See
Chapter 5 for a description of that bit.

INIT:STAT STAR starts a new measurement and ensures that changes made with delayed
result commands are reflected in the measurement results. The new measurement is started
immediately whether the current measurement is running, paused, or completed. All data
from the previous measurement is discarded when the new measurement is started.

INIT:STAT PAUS pauses the current measurement. If the measurement is averaged, the
current average is completed before the measurement is paused.

INIT:STAT RUN continues a paused measurement, It also allows you to add more data to
the running average of a completed measurement. For example, if the analyzer has
completed a 10-average measurement and you send INIT:STAT RUN, 10 more records are
averaged in with the old data, bringing the total number of averages to 20.

If you send AVER:INIT followed by INIT:STAT RUN, the result is the same as if you send
INIT:STAT STAR.

The query indicates whether the measurement is currently paused or running.

7-75

Command Reference

776

Command Reference

INPut subsystem

Description:
Commands in this subsystem are used to configure the inputs for channel 1 and channel 2.

Because there are two channels, you need to specify the channel you want to configure when
you send a command. To specify the channel, append 1 or 2 to the word INPUT or to its
short form INP. When you don’t explicitly specify one of the channels in this manner, the
analyzer configures channel 1.

NOTE The HP 35660A has two input channels (1 and 2} and two dispiays (A and B).
However, neither of the two channels is linked to a particular display. You can
display channel-1 data in either display A or display B. The same is true for
channel-2 data.

INP:COUPIling[?] command/qguery

Overlapped: no

Delayed result: yes

Pass control reguired: no
Power-up state: DC

Example Statements: ourror 711;"INP1:COUP AC®
oUrPUT 711;"Input2:Coupling de”
OUTPUT 711;"Inpl:Coup?”

Command Syntax: INPut[~ 17 |2}:COUPling<sp>{AC|DC}
Query Syntax: INPut[~ 1~ |2]:COUPling?
Returned Format: - {AC|DC}<LF><"END>

Description:
This command selects AC or DC coupling for the specified channel.

The query response tells you whether AC or DC coupling is currently selected for the
specified channel.

777

Command Reference

INP:iMPedance[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: 50

Example Statements: ourpuT 711;"INPI:IMP 50"
OUTPUT 711;"INPUTZ:IMPEDANCE .333"
OUTPUT 711; " Inp2:Imp?”

Command Syntax: INPut[~ 1~ |2 IMPedance <sp> <ohms>[<unit>]

<ohms>:=any x, where 10E-8 = x = 10E+6 (when units are ochms)
Send values in NRf format.
<unit>:;="0HM~ |KOHM |MOHM

Query Syntax: INPut[~ 1~ |2]:IMPedance?

Returned Format: <value><LF>< ~END>

<value>::=a decimal number (NRf format)}

Description:

Use this command to enter the impedance to be used for dBm calculations. The value you
select is used for both channels regardless of the channel you specify.

You can either use numbers or one of two nonnumeric parameters to set the value of
INP:IMP The nonnumeric parameters are:

¢ UP - changes the current value of INP:IMP to the next largest value defined by
the analyzer (The analyzer defines input impedance values that are 1, 2, and 5
times the powers of 10 that fall within the acceptable range.)

¢« DOWN - changes the current value of INP:IMP to the next smallest value
defined by the analyzer

The query returns the impedance value currently being used for dBm calculations. The value
is returned in ohms,

7-78

Command Reference

INP:LOWI[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: GRO

Example Statements: ouTpuT 711;"inpl:low gro”
QUTPUT 711;"INPUT2:LOW FLO"
OUTPUT 711;"INP2:LOW?"

Command Syntax: INPut{ ~ 1~ |2:LOW<sp>{FLOat| GROund}
Query Syntax: INPut[~ 1~ [2}:LOW?
Returned Format: {FLO|GRO}<LF><"~END>

Description:
Use this command to float or ground the specified channel’s input shield.

A floated input shield is connected to ground through 1 Megohm. A grounded shield is
connected to ground through 55 ohms.

The query returns FLO if the specified input’s shield is floated, GRO if it is grounded.

7-79

Command Refarence

INP:RANGe[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: variable

Example Statementis: ourrur 711;"InpZ:Rang 10"
OUTPUT 711;"inputl:range 6.2dbm"
OUTPUT 711;"INP1:RANG?"

Command Syntax: INPut[~ 1~ |2:RANGe<sp> <value>[<unit>]
< value>:=a decimal number (NRf format)

<unit>:="V™ |VRMS|DBM|DBVPK|DBVRMS (when INP:UNIT is VOLT)
~EUT JEURMS | DBEUPK |DBEURMS (when INP:UNIT is EU)

Query Syntax: INPut[~ 1~ | 2]:RANGe?
Returned Format: <value><LF>< ~END>

Description:
Use this command to enter a range for the specified channel.
Valid input ranges are from 27 through —51 dBVrms in 2 dB steps. If you send a value with

this command, it is rounded up to the next highest range. If you do not specify units when
you send a new value, the default unit is assumed.

You can either use a number or one of the three nonnumeric parameters to set the value of
INP:RANG. The nonnumeric parameters are:

e UP - changes INP:RANG to the next highest valid range
¢ DOWN - changes INP:RANG to the next lowest valid range

* (MARK[:A|:B]:VAL) ~ sets INP:RANG to the nearest value that is greater than
or equal to the amplitude of the main marker, even when the marker reference
is enabled

NOTE You can specify a new value for the channel-2 range while you are in the
one-channel measurement mode. However, the value is not used 1o set the
channel-2 range untif you enter the two-channel mode,

The query response tells you which range is currently selected for the specified channel.
The value is returned in the units last used to set the range.

7-80

Command Reference

INP:RANG:AUTOI[?] command/query

Overlapped: yes
Delayed result: no

Pass control required: no
Power-up state: 1

Example Statements: ourpur 711;"Inpi:Rang:Autc 1°
OUTPUT 711;"Inputl:RangesAuto On"
QUTPUT 711 “INP:RANG:AUTO?"

Command Syntax: INPut[~ 1~ |21:RANGe:AUTO:<sp> {OFF|ON|0|1}

Guery Syntax: INPut {~ |~ |2} RANGe:AUTO?
Returned Format {0]1} <LF> <~ END>
Description:

This command enables and disables the autoranging routine for the specified channel.

NOTE The analyzer never autoranges while an averaged measurement is in progress.

The autorange routine starts by selecting the lowest input range. It then steps the input up
through successive ranges until the input is no longer overloaded. The routine continues to
adjust the range upward in response to increased signal amplitude.

The autorange routine never adjusts the range downward in response to decreased signal
amplitude. You must restart the autorange routine if you think the range is too large for the
current input signal. Sending INP:RANG:AUTO ON restarts the autorange routine, even if
autoranging is already turned on.

Autoranging is disabled in one of the following ways:
* Sending INP:RANG:AUTC OFF {(or O)
* Specifying a range with the INP:RANG command

If you use INP:RANGE:AUTO OFF to disable autoranging, the range is fixed at the last
value selected by the autoranging routine.

The query returns 0 if autoranging is disabled, 1 if it is enabled.

7-81

Command Reference

INP:UNITs[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: VOLT

Example Statements: ourpur 711;"INPl:UNIT EU"
oUTPUT 711:"Input2:Units Volt"
OUTPUT 711;"“Inpl:Unit?”

Command Syntax: INPut[~ 1~ |21 UNITs<sp>{EU|VOLT}

Query Syniax: INPut{~ 1~ |2} UNITs?
Returned Format: {EU|VOLT}<LF><~END>
Description:

The analyzer allows you to specify input ranges and vertical scaling parameters in either
volts or engineering units. Use this command to select the kind of units you want to use.

Use INP:UNIT:EU:MULT to specify a scaling factor (V/EU) for relating EU values to volts.
Use INP:UNIT:EU:NAME to enter the name of the engineering unit you are using. The
name is used to label the vertical axis of trace displays.

The query response indicates whether input range and vertical scaling parameters are
currently being interpreted in volts or engineering units.

INP:UNIT-EU | selector

Description:

This command only selects the INP:UNIT:EU subsystem. Sending INP:UNIT:EU alone
does nothing.

7-82

Command Reference

INP:UNIT:EU:MULTiplier[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: 1

Example Statements: ourpur 711;"inpl:unit:eusmult 1™
OUTPUT 711;"INPUT2:UNETS:EU:MULTIPLIER 1.5"
OUTPUT 711;"IWNP2:UNIT:EU:MULT?"

Command Syntax: INPut[™ 1~ [2]:UNITs:EU:MULTiplier <sp> <volts_per_eu>

<volts_per_su>>:=a decimal number (NRf format)

Query Syntax: INPut[~ 1~ [2]:UNITs:EU:MULTiplier?
Heturned Format: - <volts per_eu><LF><~END>

Description:

This command allows you to specify an engineering unit (EU) scaling factor. The factor you
enter represents the number of volts per engineering unit (V/EU),

The EU scaling factor is only used when INP:UNIT is set to EU. When used, the factor
relates engineering unit values to volts measured at the specified input channel.

The query returns the scaling factor currently being used for the specified channel.

7-83

Command Reference

INP:UNITEU:NAME[?] command/query

Overlapped: no

Delayed result: yes

Pass control required: no
Power-up state: "EU"

Example Statements: ouTPUT 711;"IRPl:UNIT:EU:NAME ""KNOT"""
OUTPUT T711:"INPUTL:UNITS:EU:NAME 'g*"
OUTPUT 711;"Inpl:Unit:Eu:Name?”

Command Syniax: INPut{ ™~ 1~ |2ZLUNIT-EU:NAME <gp>{"|"} <name>{"{"}

<name>:;=1 to 8 ASCII characters

Guery Syntax: INPut[~ 1~ |2 UNIT:EU:NAME?
Returned Format: "<name>"<LF>< ~END>
Description:

This command allows you to enter a name for the specified channel’s engineering units.
The name is used to label the vertical axis of trace displays when INP:UNIT is set to EU.

The following unit labels are reserved and cannot be entered as an engineering unit label:

VRMS, V~2, VRMS * 2, V~ 2/HZ, V/RTHZ, VRMS ~2/HZ, VRMS/RTHZ, DB, DBM/HZ,
DBVPK, DBVRMS, DBM, DBVPK/RTHZ, DBVRMS/RTHY.

The query returns the engineering unit name last entered for the specified channel.
The name is returned as an ASCII character string.

7-84

Command Reference

LIMit subsystem

Description:

This subsystem provides access to limit tables over the HP-IB. It does not provide access to
the result of limit tests. For limit test results, see the DISPlay subsystem.

LIM:TABLe[?] command/query

Description:

As a result, LIM:TABL is functionally equivalent to LIM:TABI:DATA. See the latter
command for more details.

7-85

Command Reference

LIM: TABL[:DATA][?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: G (x_start)
0 {x_stop)

0 (y_start)

0 {y_stop)

2 (y_flag)

Example Statements: ourpur 711;"Liml:Tabl 2000,3000,.3,.5,2"
QUTPUT 711:%"limit7:table:data 50,55,.1,.45,1"
OUTPUT 711;"LIM:TABL:DATAZ"

Command Syntax: LIMit[<table# >]:TABLe[:DATA]<sp> <block _data>

<table#>::=1 through 8 (NRf format)

<block_data> takes one of two forms depending on whether you are sending ASCII-encoded
or binary-encoded data. When data is ASCll-encoded, (LIM:TABL:HEAD:AFOR ASC):

<block_data>:={<segment>,}... <segment><LF>< ~END>
<segment>:=<x_start>,<x stop>,<y start> <y _stop>,<y _flag>
Send these values for as many segment as you plan to define.

Send all values in the NRf format and separate them with commas.

When data is binary-encoded, (LIM:TABL:HEAD:AFOR FP32 or LIM:TABL:HEAD:
AFOR FP64):

<block_data>:=#<byte><length byles>{<segment>}..,
<byte>::=one ASCII-encoded byte that specifies the number of length bytes to follow
<length_bytes>::=ASCII-encoded bytes that specify the number of data bytes to follow
<segment>:=<x_start><x_stop> <y_start><y_stop><y_flag>

Send all values as either 32-bit or 64-bit binary floating point numbers
(depending on the setting of LIM: TABL:HEAD:AFOR).

Query Syntax: LIMit<table# >:TABLe[:DATAJ?
Returned Format: <block_data>
NOTE To determine the number of segments that will be returned in <block_data>, use

the LIMiTABL:HEAD:POIN query.

786

Command Reference

Description:

Use this command to define the specified limit table. The table can then be coupled to one of
the displays, and data in the display can be tested against the defined limits,

Each <segment> in a limit table defines a line segment. Each line segment serves as an
upper or lower boundary for acceptable y-axis values over a certain range of x-axis values.
You send as many segments as are required to define the limits.

Each segment consists of an x_start, x_stop, y_start, y_stop, and y_flag value. The x_start
and y_start values define the beginning point of a line segment on the coordinate plane.

The x_stop and y_stop values define the ending point of the segment on the coordinate plane.
The y_flag value indicates whether the segment defines the upper or lower boundary of
acceptable y-axis values, 2 being upper, 1 being lower. ‘

You define limits assuming that the data to be tested will be displayed using a particular
x-axis unit and y-axis unit, However, limit table values are actually unitless. A y_start value
of 4, for example, will be 4 dBVrms if data is displayed using dBVrms on the y-axis. It will be
4 degrees if data is displayed using degrees on the y-axis. So before you test data against a
limit table, you must be sure that display units are the same as the units you assumed when
defining the table.

The query returns all segments currently defined for the specified limit table. The format of
the returned data depends on the setting of LIM:TABL:HEAD:AFOR.

LIM:TABL:HEADer selecior

Description:

This command only selects the LIM: TABL:HEAD subsystem. Sending LIM:TABL:HEAD
alone does nothing.

7.87

Command Refersnce

LIM:TABL:HEAD:AFORmat[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: ASC

Exampie Statements: outpur 711;"Lim2:Tabl:Head:Afor Asc"
oUTPUT T11l:"LimitB8:Table:Header:hformat Fp64™
ourprr 711;"lim:tabl:head:afor?”

Command Syntax: LIMit[<table #>1:TABLe:HEADer AFORmat <sp> {ASCii |FP32 | FP64}
<table# >::=1 through 8 (NRf format)

Query Syntax: LIMit] <table #>]:TABLe:HEADer:AFORmat?
Returned Format: {ASC|FP32{FP64} <LF><"END>»

Description:

Limit tables can either be ASCIi-encoded or binary-encoded when they are transferred
between the analyzer and an HP-IB controller. This command lets you specify how the
display data should be encoded.

When ASC is selected, data is sent as a series of values separated by commas. The values are
ASCII-encoded and are formatted as NRf decimal numbers.

FP32 and FP64 both specify binary encoding. When FP32 is selected, data is sent as a series
of values within a definite length block. The values are encoded as 32-bit binary floating '
point numbers. When FP64 is selected, data is also sent as a series of values within a definite
length block. However, the values are encoded as 64-bit binary floating point numbers.

For more information on data encoding and data transfer formats, see Chapter 4,
“Transferring Data.”

The query returns ASC, FP32, or FP64 depending on the option currently specified.

7-88

LIM:TABL:HEAD:POINts?

Command Referance

query

Example Statement: ouTepuT 711;"LIM:TABL:BEAD:POIN?"

Query Syntax: LIMit{<table #>1:TABLe:HEADer:POINts?
<table#>::=1 through 8 (NRf format)

Returned Format: <value><LF»<~END>

<value>::=an integer (NR1I format)

Description:

Cvetlapped: no

Detayed result: no

Pass control required: no
Power-up state: 1

A limit table returns segments in response to the LIM:TABL:DATA query. Use this query
(LIM: TABL:HEAD:POIN) to determine how many segments will be returned from the

specified limit table.

7-88

Command Reference

7-90

Command Reference

MARKer subsystem

Description:

Commands in this subsystem are used to access the analyzer’s marker functions and
marker data.

With a few exceptions, marker commands must be directed to one of the two displays: A or B.
To specify a display, insert one of the following between the MARKER or MARK and the rest
of the command:

¢ A - asin MARK:A:BAND:CENT 51200

s :B - as in MARKER:B:HARMONIC:POWER?
¢ 1 -asin MARKERLI:X:AUTO OFF

e 2—asin MARK2:X:POIN?

Using :A or 1 directs the command to dispiay A. Using :B or 2 directs the command to display
B. If you don't explicitly specify one of the displays, the command is directed to display A.

NOTE The display to which you direct a command becomes the active display.

Two marker functions that are not found in this subsystem are limit tables and data tables.
Limit table commands are found in the DISPlay and LIMit subsystems. Data table
commands are found in the TRACe subsystem.

MARK:BAND selector

Description:

This command only selects the MARK:BAND subsystem. Sending MARK:BAND alone
does nothing.

7-91

Sommand Reference

MARK:BAND:CENTer[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 51200

Example Statements: ovrpur 711;“markl:band:cent 100hz"
OUTPUT 711;"MARKER:B:BAND:CENTER 51,2KHZ"
OUTPUT 711;"MARK:BAND:CENT?"

Command Syntax: MARKer[<spec>1:BAND:CENTer<sp> <value>[<unit>]
<spec>u=":AT |:B}1}{2
<value>:=any x, where 0 < x < 115 kHz for a I-channel measurement.
any x, where 0 < x £ 57.5 kliz for a 2-.channel measurement.
Send all numbers in NRf format.
<ynit>:i="HZ~ |KHZ

Guery Syniax; MARKer[<spec>}:BAND:CENTer?
Returned Format: <value><LF><~END>

Description:

This command defines the center of a band frequencies in which power is to be calculated.
You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:BAND:CENT. The nonnumeric parameters are:

¢ UP - steps MARK:BAND:CENT to the value of the next largest point on
the x-axis

* DOWN - steps MARK:BAND:CENT to the value of the next smallest point on
the x-axis

* (MARKI[:A|:BEVAL) - sets MARK:BAND:CENT to the frequency of the main
marker, even when the marker reference is enabled

NOTE When you change the value of MARK:BAND:.CENT, the values of
MARK:BAND:STAR and MARK:BAND:STOP are changed by the same amount.
This shifts the entire band up or down in frequency.

The query returns the center frequency of the band in Hz. The value is returned even if the
band markers are not enabled.

7-82

MARK:BAND:POWer?

Command Reference

query

Example Statement: ouTpur 711;"MARK:A:BAND:POW?"
Query Syntax: MAREKer[<spec>1:BAND:POWer?
<gpecxu= ":A™~ |:BJ1|2

Returned Format: <value><LF>< ~END>

<value>::=a decimal number (NRf format)

Description:

Overiapped: no

Delayed result: no

Pass control required: no
Power-up state: 0

Power can be caleulated for the band of frequencies defined by the band markers. This query

returns the results of the power calculation.

Power is calculated as an rms summation of the power at each frequency within the band. In
order for this query fo return the result of a power calculation, MARK:BAND:STAT and
MARK:BAND:POW:STAT must be ON. The result is converted to the current vertical unit

(DISP:Y:SCAL:UNIT) after power is calculated.

The query only returns a value. Units are returned with the DISP:Y:SCAL:UNIT query.

7-83

Command Reference

MARK:BAND:POW:STATe]?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 1

Example Statements: ouTpuT 711;°Mark:Band:Pow:Stat 0"
QUTPUT 711;"marker:band:power:state on”
QUTPUT 711; " "MARK:BAKD:POW:STATE™

Command Syntax: MARKer[<spec>1:BAND:POWer:STATe«<sp>{OFF|ON| 0|1}

<gpec>u="AT [:B|1]2

Guery Syniax; MARKer[<spec>]:BAND:POWer:STATe?
Returned Format: {0[1}<LF><"~END>
Description:

Use this command to enable or disable the band power calculation. When enabled,

power is calculated for the band of frequencies defined by the band markers and the results
of the calculation are displayed on the analyzer’s screen. See MARK:BAND:POW for

more information.

The query returns 0 if the band power calculation is disabled for the specified display, 1 if
it is enabled.

7-94

Command Reference

MARK:BAND:STARt[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 46080

Exampie Statements: ourpur 711;"Mark2:Band:Star 1lkHz"
QUTPUT 711;"Marker:Band:Start 57hz"
OUTPUT 711;"markl:band:star?"

Command Syntax: MARKer[<spec>EBAND:STARt<sp> <value>[<unit>]
<spec>:i=":A7|:B|1|2
<value>:=any x, where 0 < x < 115 kHz for a one-channel measurement.
any x, where 0 = x < 57.5 kHz for a two-channel measurement.,

Values must be decimal numbers in NRf format.
<unit>i="HZ~ |KHZ

Query Syntax: MAREKer[<spec>]1:BAND:STARL?
Returned Format: <value><LF><~END>
Description:

This command defines the lowest frequency of the band in which power is to be calculated.
You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:BAND:STAR. The nonnumeric parameters are:

* UP - steps MARK:BAND:STAR to the value of the next largest point on
the x-axis

¢ DOWN - steps MARK:BAND:STAR to the value of the next smallest point on
the x-axis

* (MARK[A[:BL:VAL) - sets MARK:BAND:STAR to the frequency of the main
marker, even when the marker reference is enabled

The query returns the lowest frequency of the band in Hz. The value is returned even if the
band markers are not enabled.

7-95

Command Reference

MARK:BAND:STATe[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 0

Example Statements: ouTpuT 711;"MARK2:BAND:STAT OFF"
cUTPUT 711;:"Marker:B:Band:State 1"
OUTPUT 711;"Mark:B:Band:Stat?”
Command Syntax: MARKer[<spec>]:BAND:STATe<sp>{OFF|ON|[0|1}

<gpec>n=":A"|:B|1]2

Guery Syniax; MARKer[<spec>]:BAND:STATe?
Returned Format: {0}1}<LF><"~END>

Description:

This command enables and disables the band markers. Band markers must be enabled
(MARK:BAND:STAT ON) before the results of a band power calculation can be returned.
See MARK:BAND:POW for more information.

At any given time, only one of the following markers can be active in the specified display:
¢ Band (MARK:BAND:STATE)
¢ Harmonic (MARK:HARM:STATE)
¢ Sideband (MARK:SID:STATE)

1f you enable the band markers when one of the other two is already enabled, that other
marker is automatically disabled.

The query returns 0 if the specified display’s band markers are disabled, 1 if they are enabled.

7-96

Corfimandt Reference

MARK:BAND:STOP[?] command/query

Overlapped: no

Delayed result; no

Pass control required: no
Power-up state; 56320

Exampie Statements: ourpur 711;"mark:a:band:stop 10000 Hz"
OUTPUT 711;"MARKER]:BAND:STOP 75KHZ"
OUTPUT 711; "MARK1:BAND:STOP?"

Command Syntax: MARKer[<spec>1:BAND:STOP <sp> <value>[<unit>]
<spec>u=":A7|:BJ1|2
<value>;;=any x, where § < x < 115 kHz for a one-channel measurement.
any x, where) < x = B7.5 kHz for a two-channel measurement.

Values must be decimal numbers in NRf format.
<unit>i="HZ~ |KHZ

Query Syniax MARKer[<spec>]:BAND:STOP?
Returned Format: <value> <LF>< ~END>

Description:

This command defines the highest frequency of the band in which power is to be caleulated,
You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:BAND:STOP. The nonnumeric parameters are:

e UP -steps MARK:BAND:STOP to the value of the next largest point on
the x-axis

*» DOWN - steps MARK:BAND:STOP to the value of the next smallest point
on the x-axis

¢ (MARK[:A[:Bl:VAL) - sets MARK:BAND:STOP to the frequency of the main
marker, even when the marker reference is enabled

The query returns the highest frequency of the band in Hz. The value is returned even if the
band markers are not enabled.

797

Command Reference

MARK:DTABIle command

Description:

MARK:DTAB is functionally equivalent to MARK:DTAB:DATA. See the latter command for
more details.

MARK:DTAB[:DATA}[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: 0,0

Exampie Statements: ourpur 711; "MARKER:DTABLE:DATA 12800,25600"
OUTPUT 711;"MARK2:dtab:data?”

Command Syntax: MARKer[<spec>]:DTABle[:DATA] <sp><block_data>
<sgpec>i=":A" [:B|1]2

<block data> takes one of two forms, depending on whether the data is ASCII-encoded or
binary-encoded. When data is ASClI-encoded (MARK:DTAB:HEAD:AFOR ASC):

<block data>:;={<x value>}..<x value n>«<LF><"END>
<x_value>::=x-axis values for the 1* through n'h points

Send values using the NRf format. The values you send are understood to be in the current
display units.
When data transfers are set to binary (MARK:DTAB:HEAT:AFOR FP32 or
MARK:DTAB:HEAD:AFQOR FP84):

<block_data>:=#<byte> <length_bytes>{<x value>}...

<byte>:=one ASCII-encoded byte that specifies the number of length bytes to follow
<length_bytes>::=ASClI-encoded bytes that specify the number of data bytes to follow

<x_value> has the same definition specified for ASCII-encoded data. However, you should
send it as either a 32-bit or a 64-bit binary floating point number, depending on how you
have set MARK:DTAB:HEAD:AFOR.

Query Syntax: MAREKer[<spec>]:DTABle[:DATA]?

7-98

Commeand Reference

Returned Format: <block_data>

<block data> takes one of two forms, depending on whether the data is ASCII-encoded or
binary-encoded. When data is ASClIl-encoded (MARK:DTAB:HEAD:AFOR ASC):

<block_data»:i={<point>}. . <point n><LF><"END>
<point>:=<x_value>,<y_value>

<x_value>:=x-axis values for the 1* through n'P points (n is returned with the
MARK:DTAB:HEAD:POIN query)

<y_value>: =y-axis values for the 1 through nt® points

Values are returned in the NRf format. Units for the values are the current display units.

When data transfers are set to binary (MARK:DTAB:HEAD:AFOR FP32 or
MARK:DTAB:HEAD:AFOR FP64):

<block _data>::=#<byte> <length_bytes>{<point>}...
<byte>:=one ASCII-encoded byte that specifies the number of length bytes to follow
<length bytes>::=ASCII-encoded bytes that specify the number of data bytes to follow
<point>:=<x_value><y value>

<x_value> and <y_value> have the same definition specified for ASCIl-encoded data.
However, they are returned as either 32-bit or 64-bit binary floating point numbers,
depending on the setting of MARK:DTAB:HEAD:AFOR.

Description:
Use this command to define a data table for the specified trace.

A data table is defined by sending a series of x-axis values. The values are assumed to be in
the current x-axis units (TRAC:HEAD:XUN). When data table calculation is turned on
(MARK:DTAB:STAT ON), the y-axis value of the trace is calculated for each x-axis value that
you sent.

The query returns a series of points. Each point consists of an x-axis value followed by the
y-axis value of the trace at that point. Use TRAC:HEAD:XUN to determine the units for the
x-axis values. Use TRAC:HEAD:YUN to determine the units for the y-axis values. Y-axis
values will all be 0 if MARK:DTARB:STAT is OFF.

7-89

Command Reference

MARK:DTAB:HEADer selector

Description:

This command only selects the MARK:DTAB:HEAD subsystem. Sending
MARK:DTAB:HEAD alone does nothing,

MARK:DTAB:HEAD:AFORmat[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Power-up state: ASC

Example Statemenis: ourpur 711;"MARK2:DTAB:HEAD:AFOR FE64"
QUTPUT 711;"Markerl:Dtable:Header:Aformat ASCii™
OUTPUT 711; "MARK:B:DTAB:HEAD:AFOR?"

Command Syntax: MARKer[<spec>]:DTABle:HEADer:AFORmat<sp>{ASCii|FP32|FP64}
<gpec>u=":A" |:B|1]2

Query Syntax: MARKer[<spec>]DTABle:HEADer:AFORmat?
Returned Format: {ASC|FP32|FP64} <LF><"END>
Description:

Data tables can either be ASCII-encoded or binary-encoded when they are transferred

between the analyzer and an external controller. This command lets you specify how a data
table should be encoded.

When ASC is selected, data is transferred as a series of values separated by commas. The
values are ASClII-encoded and are formatted as NRf decimal numbers.

FP32 and FP64 both specify binary encoding. When FP32 is selected, dataissentas a
series of values within a definite length block. The values are encoded as 32-bit binary
floating point numbers. When FP64 is selected, data is also sent as a series of values
within a definite length block. However, the values are encoded as 64-bit binary floating
point numbers.

The query returns ASC, FP32, or FP64, depending on the option currently specified.

7-100

Command Reference

MARK:DTAB:HEAD:POINts? query

Overlapped: no

Delayed result: no

Pass cortrol required: no
Power-up state: 1

Example Statement: ouTpuT 711;markK:B:dtab:head:poin?”

Query Syniac MAREer[<spec>]:DTABle:HEADer:POINts?
<spec>u="AT [:B|1|2

Returned Format: <value><LF>»<~END>

<value>:u=an integer (NR1 format)

Description:

This query tells you how many data table points will be returned from the specified Trace in
response to the MARRK:DDTAB:DATA query. Each point will contain both an x-axis value and
a y-axis value.

MARK:DTAB:STATe[?] command/query

Overlapped: no
Delayed result: no

Pass control required: no
Fower-up state;

Example Statements: ouTPUT 711; "MARK:A:DTAB:STAT OFF"
OUTPUT 711;"MARKER:B:DTABLE:STATE 1"
OUTPUT 711;"Markl:Dtab:Stat?"

Command Syntax: MARKer[<spec>]:DTABle:STATe<sp>{OFF|ON |01}
<spec>us=":A7 |:B|1|2
Query Syntax; TRACe[<spec>]:DTABle:STATe?

Returned Format: {0|1}<LF><"~END>

Description:

This command enables data table calculations for the specified trace.

A data table is defined by one or more x-axis values. When data table calculations are
enabled, the trace’s y-axis value is calculated for each of the x-axis values. This calculation
occurs each time the trace is updated.

The query returns 0 if data table calculations are disabled, 1 if they are enabled.

7-101

Command Reference

MARK:FUNCtion command

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statement: outpur 711; mark:b:func aoff"

Command Syntax: MAREKer[<spec>1:FUNCtion AOFF
<gpec>u=":A"|:B{1]2

Description:

This ecommand allows you to simultaneously turn off all special markers for the specified
channel. The following are all set to :

» MARK:BAND:STAT
» MARK:HARM:STAT
» MARK:SID:STAT

MARK:HARMonic[?] command/query

Description:

MARK:HARM is functionally equivalent to MARK:HARM:FREQ, See the latter command
for more details.

MARK:HARM:COUNt[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 20

Example Statements: outrur 711; "MARK2 :HARM:COUN 10"
CUTPUT 711;"MARKER:A:HARMONIC:COUNT 120"
OUTPUT 711;"Mark:B:Harm:Coun?”

Command Syntax: MAREKer[<spec>]:HARMonic:COUNt<sp> <value>
<spec>u=":A" ['B|1]2

<value>:=any integer x, where 0 < x < 400 (NRf format)

Query Syntax: MAREKer[<spec>]"HARMonic:COUNt?

Returned Format: <valie><LF>< ~END>

<value>:=an integer NR1 format)

7-102

Command Reference

Description:
Use this command to specify the number of harmonic markers you want displayed.

You can either use numbers or one of two nonnumeric parameters to set the value of
MARK:HARM:COUN. The nonnumeric parameters are:

¢ UP - increases the value of MARK:HARM:COUN by one
¢ DOWN - decreases the value of MARK:HARM:COUN by one

The query returns the number of harmonic markers currently specified for the display.
The value is returned even if harmonic markers are not enabled.

7-103

Command Reference

MARK:HARM[:FREQuency][7] command/query

Overiapped. no

Delayed result: no

Pass control required: no
Power-up state: 10240

Example Statements: ourpur 711;"Markl:Harm 100"
OUTPUT 711;"marker:btharmonic:frequency 25.7khz"
OUTPUT 711;"MARKZ :HRRM:FREQ?"

Command Syntax: MARKer[<spec>]HARMonic[. FREQuencyl<sp><value>[<unit>]
<spec>;=":A" [:B|1|2
<value>::=any x, whera 0 = x = 115 kHz for a one-channel measurement
any x, where 0 < x = 57.5 kHz for & two-channel measurement

Values must be decimal numbers in NREf format.
<unit>:;="HZ~ |KHZ

Query Syntax: MARKer[<spec>]:HARMonic[:FREQuency]?
Returned Format: <value><LF><"~END>

Description:

This command allows you to specify the fundamental frequency for harmonic markers
and calculations.

You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:HARM:FREQ. The nonnumeric parameters are:

o UP - steps MARK:HARM:FREQ to the value of the next largest point on
the x-axis

* DOWN - steps MARK:-HARM:FREQ to the value of the next smallest point on
the x-axis

e (MARK[:A|:Bl:VAL) - sets MARK:HARM:FREQ to the frequency of the main
marker, even when the marker reference is enabled

The query returns the fundamental frequency currently being used for harmonic markers
and calculations, The value is returned in Hz. It is returned even if the harmonic markers
are not enabled.

7-104

Command Reference

MARK:HARM[:FREQ]:DlVide command

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statements: ouTpuT 711;°Mark:Harm:Div 3"
OUTPUT 711;"MARK:B:HARM:FREQ:DIV 4"

Command Syntax: MARKer[<spec>HARMonic[.FREQuency}:DIVide<sp> <value>
<spec>i=":A™ |:B|1]2

<value>:i=anyx, where] £z £ 1E+100

Description:

This command allows you to divide the current value of MARK:HARM:FREQ by a specified
amount. The result of this division becomes the new value of MARK:HARM:FREQ.

7-105

Command Reference

MARK:HARM:POWer? query

Cverlapped: no

Delayed result: no

Pass control required: no
Power-up state: 0

Example Statement: ourpur 711;"Mark:B:Harm:Pow?"

Query Syniax: MARKer] <spec>LHARMonic;POWer?
<gpec>u= 1A [:B}1]2
Returned Format: <value»<LF>»<~END>
<value>:=ga decimal number (NRf format)

Descriplion:

Total harmonic power can be calculated for the current fundamental frequency. This query
returns the results of the power caleulation.

Total harmonic power is calculated as an rms summation of the power at all marked
harmonics. The result is converted to the current vertical unit (DISP:Y:SCAL:UNIT) after
power is ealculated. In order for this query to return the result of a power calculation,
MARK:HARM:STAT and MARK:HARM:POW:STAT must be ON.

The query only returns a value. Units are returned with the DISP:Y:SCAL:UNIT query.

7-106

Command Reference

MARK:HARM:POW:STATe[?] command/query

Overlapped: no

- Delayed result: no
Pass control required: no
Power-up state: 0

Example Statements: ouTPUT 711;"MARK:A:HARM:POW:STAT ON"
QUTPUT 711;"Marker:B:Harmonic:Power:State 0"
CUTPUT 711;"Mark2:Harm:Pow:Stat?"

Command Syntax: MARKer[<spec>}1HARM:POWer:STATe<sp>{OFF|ON| 6|1}
<specxu=":A™ |:B[1]2

Query Syntax: MARKer[<spec>]HARM:POWer:STATe?
Returned Format: {011}<LF><"~END>

Description:

Use this command to enable and disable the total harmonic power calculation. When
enabled, power is calculated for the marked harmoniecs and the results of the caleulation are
displayed on the analyzer’s screen. See MARK:HARM:POW for more information.

At any given time, only one of the two harmonic calculations can be enabled for the specified
display. If you enable the harmonic power calculation when the total harmonic distortion
calculation is already enabled, the latter is automatically disabled. (The total harmonic
distortion calculation is enabled and disabled with the MARK:HARM:THD:STAT command.)

The query returns 0 if total harmonic power calculation is disabled for the specified display,
1if it is enabled.

7-107

Command Reference

MARK:HARM:STATe[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 0

Example Statemenis: ouTrur 711;*mark2:harm:istat on”
QUTPUT 711; "MARKER:B:HARMONIC:STATE 1°
OUTPUT 711;“MARK:A:HARM:STAT?"

Command Syntax: MARKer{<spec>]:HARMonic:STATe<sp>{OFF |ON|0}1}
<sgpec>n="":A" [:B|1]|2

Query Syntax: MARKer[<spec>1:IHHARMonic:STATe?
Returned Format: {0]1}<LF><~END>

Description:

This command enables and disables the harmonic markers. Harmonic markers must be
enabled (MARK:HARM:STAT ON) before the resuits of a harmonic caleulation can be
returned. See MARK:HARM:POW and MARK:HARM:THD for more information.

At any given time, only one of the following markers can be active in the specified display:

* Band (MARK:BAND:STATE)
* Harmonic (MARK:HARM:STATE)
* Sideband (MARK:SID:STATE}

If you enable the harmonic markers when one of the other two is already enabled, that other
marker is automatically disabled.

The query returns 0 if the specified display’s harmonic markers are disabled, 1 if they
are enabled.

7-108

Command Reference

MARK:HARM:THD? guery

Overlapped: no

Delayed result; no

Pass control required: no
Power-up state: 0

Example Statement: ouTpuT 711; "MARR1:HARM:THD?"

Query Syntax: MARKer[<spec>]:HARMonic: THD?
<spec>i=" A~ |[:B|1]|2
Returned Format: <value><LF>< ~END>
<value>:=a decimal number (NRf format)
Description:

Total harmonic distortion can be calculated for the current fundamental frequency. This
query returns the results of that ealculation.

Total harmonic distortion (THI}) expresses total harmonic power (THP) as a percentage of
the power in the fundamental frequency. The formula is:

THD=(THP/fundamental_power)x 100

In order for this query to return the result of the THD calculation, MARK:HARM:STAT and
MARK:HARM:THD:STAT must be ON.

7-108

Command Reference

MARK:HARM:THD:STATe[?] command/guery

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state; 1

Example Statements: ourpuT 711;"Mark:B:Harm:Thd:Stat Off"
OUTPUT 711;:;"markerl:harmonics:thd:state 17
OUTPUT 711;"MARK2:HARM:THD:STAT?"

Command Syntac MARKer[<spec>]:HARMonic:THD:STATe<sp>{OFF|ON|0|1}
<gpec>u="":A7 |:B|1}2 '

Query Syntax: MARKer[<gpec>]:HARMonic:THD:STATe?
Returned Format: {0]1}<LF>< "~ END>

Description:

Use this command to enable and disable the total harmonic distortion (THD) calculation.
When enabled, THD is calculated for the fundamental frequency and all marked harmonics.
The results of the calculation are displayed on the analyzer’s screen. See MARK:HARM:THD
for more information.

At any given time, only one of the two harmonic calculations can be enabled for the specified
display. If you enable the total harmonie distortion calculation when the harmonic power
calculation is already enabled, the latter is automatically disabled. (The harmonic power
calculation is enabled and disabled with the MARK:HARM:POW:STAT command.)

The query returns 0 if total harmonic distortion caleulation is disabled for the specified
display, 1 if it is enabled.

MARK:SIDeband[?] command/query

Description:

MARK:SID is functionally equivalent to MARK:SID:FREQ. See the latter command for
more details.

7-110

Command Reference

MARK:SID:COUNt[?] command/query

Overlapped: no

Delayed result: no

Pass controf required: no
Power-up state: 20

Example Statements: ourpur 711;"Mark:B:Sid:Coun 12"
OUTFUT 711;"Markerl:Sideband:Count 154"
OUTPUT 711;"mark:a:sid:coun?”

Command Syntax; MARKer{«<spec>]:8IDeband: COUNt<sp> <value>
<spec>u=":A"|'B|1]2

<value>::=any integer %, where 0 = x = 200 (NRf format)

Query Syntax: MARKer[<spec>1:5IDeband:COUNt?

Returned Format: <valie> <LF>< ~END>

<value>:=an integer (NR1I format)

Description:
Use this command to specify the number of sideband markers you want displayed.

You can either use numbers or one of two nonnumeric parameters to set the value of
MARK:SID:COUN. The nonnumeric parameters are:

» UP —increases the value of MARK:SID:COUN by one
* DOWN -~ decreases the value of MARK:SID:COUN by one

The query returns the number of sideband markers currently specified for the display.
The value is returned even if sideband markers are not enabled.

7111

Comimand Reference

MARK:SID:DELTa[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 2048

Example Statements: ouTpuT 711;"MARR:B:SID:DELT 100"
QUTPUT 711;"Markerli:Sideband:Delta 17
QUTPUT 711;"Mark:A:5id:Delt?”

Command Syntax: MARKer[<spec>]:SIDeband: DELTa<sp > < value>[<unit>]
<gpec>u=":A7T|:BJ1]|2

<value>:=any x, where 0 < x < 115 kHz for a one-channel measurement
any x, where 0 < x < 57.5 kHz for a two-channel measurement
Walues must be decimal numbers in NRf format.
<unit>u="HZ ™ |[KHZ

Query Syntax: MAREKer[<spec>]:8IDeband: DELTa?
Feturned Format: <value><LF>< ~END>

Description:
Use this command to specify the frequency increment (or delta) between sideband markers.

You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:SID:DELT. The nonnumeric parameters are:

¢ UP - steps MARK:SID:DELT to the next largest acceptable value

* DOWN - steps MARK:SID:DELT to the next smallest acceptable value

° (MARKI[:A[:BLEVAL) - sets MARK:SID:DELT to one of two values depending on
the marker mode selected. When MARK:X:MODE is NORM, MARK:SID:DELT
is set to the value of the main marker. When MARK:X:MODE is DELT,
MARK:SID:DELT is set to the difference between the marker reference value
and the main marker value.

The query returns the frequency increment currently specified. The value is returned in Hz.
It is returned even if sideband markers are not on.

7-112

Cormmand Referencs

MARK:SID[:FREQuency][?] command/query

COverlapped: no

Delayed resuli: no

Pass control required: no
Power-up state: 51200

Example Statements: outpur 711;"mark:sid 10khz"
OUTPUT 711;:"MARKER:SIDEBAND:FREQUENRCY .053KHZ"
OUTPUT 711;"MARK:A:SID?"

Command Syntax: MARKer[<spec>]:81Deband[:FREGQuencyl<sp> <value>[<unit>]
<spec>i="A7 [:B|1]2
<value>:=any x, where 0 < x = 115 kH{z for a one-channel measurement.
any x, where 0 £ x < 57.5 kHz for a two-channel measurement.

Values
<unit>n="HZ~ |KHZ

Query Syntax: MARZKer[<spec>]:8IDeband[:FREQuency]?
Returned Formeat: <value><LF>< ~END>
Description:

This command allows you to specify the carrier frequency for sideband markers
and calculations.

You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:SID:FREQ. The nonnumeric parameters are:

* UP - steps MARK:SID:FREQ to the value of the next largest point on the x-axis

¢ DOWN - steps MARK:SID:FREQ to the value of the next smallest point on
the x-axis

¢ (MARKI[:A|:B]:VAL) - sets MARK:SID:FREQ to the frequency of the main
marker, even when the marker reference is enabled

NOTE When you shift the carrier frequency up or down, the sideband markers are all
shifted up or down by the same amount.

The query returns the carrier frequency currently being used for sideband markers and
calculations. The value is returned in Hz. It is returned even if sideband markers are
not enabled.

7-113

Command Reference

MARK:SID:POWer? qguery

Overlapped: no

Delayed resuit: no

Pass controt required: no
Power-up state: 0

Example Statement: ouTrur 711;"MARK2:SID:POW?"

Query Syntax: MARKer{<spec>]:81Deband:POWer?
<gpec>u=":A" |:B]1]2
Returned Format: <value><LF><~END>

<values>:i=a decimal number (NEf format)

Description:
Sideband power can be calculated for the current carrier frequency. This query returns the
results of the power calculation.

Sideband power is calculated as an rms summation of the power at all marked sidebands.
The result is converted to the current vertical unit (DISP:Y:SCAL:UNIT) after power is
calculated. In order for this query to return the results of a power calculation,
MARK:SID:STAT and MARK:SID:POW:STAT must be ON,

The query only returns a value. Units are returned with the DISP:Y:SCAL:UNIT query.

7-114

Command Reference

MARK:SID:POW:S5TATe[?] command/query

Qverlapped: no

Delayed result: no

Pass control required: no
Power-up state: 1

Example Statements: ourpur 711;"Mark:B:Sid:Pow:Stat OFff"
OUTPUT 711;"markerissideband:power:state 1"
QUTPUT 711;"MARK2:SID:POW:STAT?"

Command Syntax: MARXKer[<spec>]:SIDeband:POWer:STATe<sp>{OFF|ON |0} 1}
<spec>n=":AT IB|1[2

Query Syntax: MARKer[<spec>]:8IDeband:POWer:STATe?
Returned Format: {0]1}<LF><"~END>

Description:

Use this command to enable and disable the sideband power calculation. When enabled,
power is calculated for the marked sidebands and the results of the calculation are displayed
on the analyzer’s screen. See MARK:SID:POW for more information.

The query returns 0 if sideband power calculation is disabled for the specified display, 1ifit
~ is enabled.

7-115

Command Reference

MARK:SID:STATe[?] command/query

Overlapped: no

Defayed result: no

Pass control required: no
Power-up state: 0

Exampie Statements: ourpur 711;"Mark2:5id:Stat On"
OUTPUT 711; "Marker:A:Sideband:State 0"
OQUTPUT 711;"mark:b:zid:stat?”

Command Syntax: MARKer[<spec>]:81Deband:STATe<sp>{OFF|ON|0]1}
<sgpec>n= AT [:B|1]|2

Query Syntax: MARKer[<spec>1:8IDeband:STATe?
Returned Format: {0[1}<LF><~END>
Description:

This command enables and disables the sideband markers. Sideband markers must be
enabled (MARK:SID:STAT ON) before the results of the sideband power ealculation ean be
returned. See MARK:SID:POW for more information.

At any given time, only one of the following markers can be active in the specified display:

¢ Band (MARK:BAND:STATE)
* Harmonic (MARK:HARM:STATE)
¢ Sideband (MARK:SIT:STATE)

If you enable the sideband markers when one of the other two is already enabled, that other
marker is automatically disabled.

The query returns 0 if the specified display’s sideband markers are disabled, 1 if they
are enabled.

7-116

Command Reference

MARK[:X][?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 51200 (display A)
0.00390 (display B)

Example Statementis: ourrur 711;“MARR 100°
OUTPUT 711;"MarkerZ:X 17KHZ"
OUTPUT 711;*Mark:A:X?"

Command Syniax: MARKer[<spec>}[:X]<sp><value>[<unit>]

~ A~ |:B|1)2
a decimal nuraber (NRf format)

<spec>::

I

<value>::
<unit>:="HZ ™ |KHZ (for frequency domain displays)
~ 87 IMS|US {for time domain displays)

Query Syntax: MARKer[<spec>][:X]?
Returned Format: <value><LF><~END>
Deseription:

This command allows you to specify the position of the main marker along the x-axis.

The position is always specified relative to 0 Hz for frequency-domain displays. It is always
specified relative to 0 seconds for time-domain displays. You can not specify the position
relative to the marker reference, even when MARK:X:MODE is DELT

You can either use numbers or one of two nonnumeric parameters to set the value of
MARK:X. If you use a number, it is rounded to the value of the nearest point on the x-axis.
The nonnumeric parameters are:

¢ UP - steps MARK:X to the value of the next largest point on the x-axis
¢ DOWN - steps MARK:X to the value of the next smallest point on the x-axis

The query returns the current x-axis value of the main marker if MARK:STAT is ON. The
value is returned in Hz for a frequency-domain display and seconds for a time-domain display.

The returned value is never relative to the position of the marker reference, even if
MARK:X:MODE is DELT.

7-117

Command Reference

MARK[:X]:AMAXimum command

Description:
MARK:X:AMAX is functionally equivalent to MARK:X:AMAX:GLOB. See the latter
command for more details.

MARKX]:AMAX:AUTO[?] command/query

Overlapped: no

Delayed resul: no

Pass control required: no
Power-up state: O

Example Statements: ouTpur 711;"mark2:amaxsauto off"
OUTPUT 71il;"MARKER:A:¥X:AMAXTIMUM:AUTO 1"
QUTPUT 711;"MARK:B:AMAX:AUTO?"

Command Syntax: MARKer[<gpec>][:X:AMAXimum:AUTO «<sp > {OFF |ON|0}1}
<spec>u=":A"|:B|1]|2

Guery Syntax: MARKer[<spec>][:X]:AMAXimum:AUTO?
Returned Format: {6]1}<LF><"~END>
Description:

This command enables and disables peak tracking.

When peak tracking is on, the main marker continuously moves to the highest peak on the
specified trace. Any peak at 0 Hz is ignored. Peak tracking is automatically turned off when
MARK[:XJ:AMAX:LEFT or MARK[:X1:AMAX:RIGH is sent to the instrument.

The query returns 0 if peak tracking is disabled for the specified trace, 1 if it is enabled.

7-118

Command Reference

MARK[:X]:AMAX[:GLOBAal] command

Overlapped: no

Delayed result no

Pass control required: no
Power-up state: not applicable

Example Statements: ourpur 711;“MARK:X:AMAX"
OUTPUT 711;"MARKER:A:X:AMAXIMUM:GLOBAL"

Command Syntax: MARKer[<spec>][:X]:AMAXimum[:GL.OBall
<gpec>:u= " A~ |:B]1|2

Description:
This command moves the main marker to the highest peak on the specified trace.

This command does not allow the main marker to track the highest peak when the trace
is updated. Once the peak is found, the marker remains at the point along the x-axis where

the peak cecurred. If you want the main marker to track the highest peak, use the
MARK:X:AMAX:AUTO command.

MARK[:XJ:AMAX:LEFT command

Overtapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statements: ourpuT 711;"Markl:Amax:Left"
QUTPUT 711;"marker:b:x:amaximum:left"”

Command Syntax: MAREKer[«<spec>][:X]:AMAXimum: LEFT
<spec>u=":A"[:B|1i2

Description:

This command moves the main marker to the next peak to the left of the current
marker position.

7-118

Command Aeference

MARK[:X1:AMAX.RIGH? command

Overfapped: no

Delayed result: no

Fass control required: no
Power-up state: not applicable

Example Statementis: ouvrpur 711; "Mark:XsAmax:Righ"
OUTPUT 71l;"Marker:A:¥:BmaximumsRight™

Command Syntax: MARKer[<spec>[:X:AMAXimum:RIGHt
<gpec>u=":A"|:B|1|2

Description:

This command moves the main marker to the next peak to the right of the current
marker position.

MARK[X]:AMINIimum command

Description:

MARKI[:X]:AMIN is functionally equivalent to MARK:X:AMIN:GLOB. See the latter
command for more details.

MARK[:X]:AMIN[:GLOBal] command

Overlapped: no

Delayed result; no

Pass control required: no
Power-up state: not applicable

Example Statements: ourpur 711;"MARKI:X:AMIN:GLOR"
OUTPUT 711;"Marker:B:X:Aminimum:Global”

Command Syntax: MARKer{<spec>}[:X]:AMINimum[:GLOBal]
<spec>:u=":A" |:B|1]|2

Description:
This command moves the main marker to the lowest point on the specified trace.

7-120

Command Reference

MARK][:X]:AMPLitude? query

Overlapped: no

Delayed resuit: no

Pass control reqguired: no
Power-up state: variable

Examiple Statement: ourrur 711;"markZsamplz”

Guery Syntax: MARKerf <spec>][:X]:AMPLitude?
<spec>u=":A7 [:B]1|2

Returned Format: <value><LF>< ~END:>

< value>::=g decimal number (NRf format)

Description:

This query returns one of two values, depending on the setting of MARK:X:MODE.

When MARK:X:MODE is NORM and MARK:X:STAT in ON, the query returns the main
marker’s is current amplitude. When MARK:X:MODE is DELT and MARK:X:STAT is ON,

the query returns the difference between the amplitude of the marker reference and the
amplitude of the main marker. Values are returned in the current display unit.

7-121

Command Reference

MARK[:X]:AUTO[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 0

Exampie Statemenis: ourpur 711;"MARK:B:X:AUTO 0"
OUTEUT 711;"MARKERL:X:AUTO ON"
QUTPUT T71l:"Mark:RA:¥:Auto?"

Command Syntax: MARKer[<spec>][:X]:AUTO <sp>{0FF |ON|0[1}
<gpec>u= A7 |:B|1]2

Giuery Syntax: MARKer[<spec>1[:X1:AUTO?
Returned Format: {0]1}<LF><"~END>
Description:

Use this command to enable and disable marker coupling.

Marker coupling links the main markers of display A and display B. When you send a
command that moves the main marker of one display, the main marker of the other
also moves.

Marker coupling is especially useful when you are displaying the same measurement data
using two different trace types. For example, if you were displaying frequency response data
using the magnitude and phase trace types, you could track the magnitude and phase of the
data at each frequency.

Marker movements are linked via x-axis point number, not by the relative position from the
left side of the displays. As a result, linked markers may not always line up on the analyzer’s
screen. For example, you could display the same measurement data using the same trace type
on both displays. But if x-axis points are spaced linearly on display A and logarithmically on
display B, the markers will only be aligned on the screen when they are at the first and last
x-axis points.

When marker coupling is enabled, the position, of the inactive trace’s main marker always
corresponds to the position on the active traces main marker. This is true even when peak
tracking is enabled (MARK:X:AMAX:AUTO ON) for the inactive trace,

The query returns 0 if marker coupling is disabled, 1 if it is enabled.

7-122

Command Reference

MARK[:X]:DELT[?] command/query

Overlapped: no

Delayed resuit: no

Pass control required: no
Power-up state: 52100 (display A)
0 (display B)

Example Statements: ourpuT 711; "Mark:A:Delt 100"
OUTPUT 711;"marker:bix:delta 87khz"
OUTPUT 711; "MARKI :X:DELT?"

Command Syntax: MARKer[<spec>][:X]:DELTa<sp> <value>[<unit>]
<gpec>u="" A" LB}1]2
<value>:=a decimal number (NRF format)
<unit>:="HZ~ |KHZ (for frequency domain displays)
~ 8 IMS|US (for time domain displays)

Query Syntax: MARRer[<spec>][:X]:DELTa?

Returned Format: <value><LF>< ~"END>

<value>::=a decimal number (NRf format)

Description:

A marker reference can be defined by specifying an x-axis and y-axis value. This command
allows you to specify the x-axis value of the marker reference. When MARK:X:MODE is
DELT, the value returned by MARK:AMPL? is difference between the amplitude of the
marker reference and the amplitude of the main marker.

You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:X:DELT. The nonnumeric parameters are:

o UP - steps MARK:X:DELT to the value of the next largest point on the x-axis

¢+ DOWN - steps MARK:X:DELT to the value of the next smallest point on
the x-axis

o (MARKI[:A[:BL:VAL) — sets MARK:X:DELT to the x-axis value of the main
marker, even when the marker reference is enabled

To enable the marker reference, MARK:X:STAT must be ON and MARK:X:MODE must
be DELT.

The MARK:X:DELT this query returns the current x-axis value of the marker reference.

The value is returned in Hz for a frequency-domain display and in seconds for a
time-domain display.

7-123

Command Reference

MARK[:X]:DELT:AMPLitude[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 40 (display A)
0 (display B)

Example Statements: ourpuT 711:;"Markl:Delt:Ampl 20"
OUTPYT 711;"Marker:X:Delta:Amplitude .57
QUTPUT 711;"mark2:x:delt:ampl?”

Command Synta: MARKer{<apec>][:X]:DELTa:AMPLitude <sp> <value>

<gpec>:=""A7 |:B|1]2
<value>::=a decimal number (NRf format)

Guery Syntax: MARKer[<spec>{[:XEDELTa:AMPLitude?
Returned Format: <value» <L¥F>< ~END>
Description:

A marker reference can be defined by specifying an x-axis and y-axis value. This command
allows you to specify the y-axis value of the marker reference. When MARK:X:MODE is
DELT, the value returned by MARK:X:AMPL? is the difference between the amplitude of the
marker reference and the amplitude of the main marker.

You can not specify units for the y-axis value. They are assumed to be the same as the
current display units. These can be determined with the DISP:V:SCAL:UNIT query.

You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:X:DELT:AMPL. The nonnumeric parameters are:

° UP - increases the value of MARK:X:DELT:AMPL by half the increment
between vertical grid lines

* DOWN - decreases the value of MARK:X:DELT:AMPL by half the increment
between vertical grid lines

* (MARK[:A|:BI:VAL) - sets MARK:X:DELT:AMPL to the y-axis value of the main
marker, even when the marker reference is enabled

To enable the marker reference, MARK:X:STAT must be ON and MARK:X:MODE must
be DELT.

The MARK:X:DELT query returns the current amplitude of the marker reference. The units
for this value are returned with the DISP:Y:SCAL:UNIT query.

7-124

Command Reference

MARK[:X]:DELT:POINt[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 200 (display A)
0 (display B)

Example Statements: ourpuT 711;"MARK:A:X:DELT:POIN 107
oUTPUT 711; "Marker2:¥:Delta:Point 256"
OUTPUT 711;"Mark:B:X:Delt:Poin?”

Command Syntax: MARKer[<spec>1:X1:DELTa: POINt<sp> < value>
<spec>u=":A"|:B|1|2

<value>n=any integer x, where 0 < x < 400 (for a frequency-domain display)
any integer x, where 0 < x 5 1023 (for a time-domain display)
Send all values in the NRf format.

Query Syntax: MARKer[<spec>1[:X]:DELTa:POINt?

Returned Format: <value><LF>< "~ END>
<value>:=an integer (NR1 format)

Description:

The x-axis is divided into discrete points: 401 points for frequency-domain displays, and 512
or 1024 points for time-domain displays. This command lets you define the x-axis position of
the marker reference as a point number rather than a frequency or time.

You can either use numbers or one of two nonnumeric parameters to set the value of
MARK:X:DELT:POIN. The nonnumeric parameters are:

¢ UP -increases the value of MARK:X:DELT:POIN by one
* DOWN ~ decreases the value of MARK:X:DELT;POIN by one

The query returns the marker reference’s x-axis position as a point number.

7-125

Command Reference .

MARKDX]:DELT:ZERO command

Cverlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statements: ouTpuT 711:"MARK:DELY:ZERO"
OUTPUT 711;"Markerl:X:DeltasiZeroc”

Command Syntax: MARKer[<spec>][:X]:DELTa:ZERO
<gpec>n=":A7 [:B[1]|2

Description:
This command sets the marker reference to the current position of the main marker.

MARK[:X1:MODE[?] command/query

Overiapped: no

Delayed result: no

Pass control required: no
Power-up state: NORM

Example Statements: cuTpUT 711;"mark:bimode norm"
OUTPUT 711; "MAREERL:¥X:MODE DELTA™
OUTPUT 711;"MARK:B:X:MODE?"

Command Syntax: MARKer[<spec>][:X]:MODE<sp> {DELTa|NORMal}
<spec>u=":A"|:B{1]2

Query Syntax: MARKer[<spec>1[:X]:MODE?
Heturned Format: {DELT|NORM} <LF><~END>
Description:

This command enables and disables the marker reference for the specified display.

When the marker reference is enabled, the main marker’s amplitude (returned by
MARK:X:AMPL?) is expressed as an amount of offset from the marker reference position.
However, the main marker’s x-axis position (returned by MARK:X?) is never expressed as an
offset from the marker reference, regardless of the setting of MARK:X:MODE.

Use one of the following to define the marker reference position.
o MARK:X:DELT:ZERO

« MARK:X:DELT:AMPL in combination with either MARKJCDELT or
MARK-X:DELT-POIN

The query returns DELT when the marker reference is enabled, NORM when it is disabled.

7-126

Commargd Reference

MARK[:X}:POINt[?] command/auery

QOverlapped: no

Delayed result no

Pass control required: no
Power-up state: 200 (display A)
512 (display B)

Example Statemenis: ouTpUT 711; "MARK:X:POIN 128"
OUTFUT 711;"MARKER:A:X:POINT 512"
OUTPUT 71i:"Mark2:X:Poin?”

Command Syntax: MARKer[<spec>][:X]:POINt<sp> <value>
<gpec>i=":A~ [B|1|2

<value>:=any integer %, where 0 5 2 5 400 (for a frequency-domain display)
any integer x, where § < x < 1023 (for a time-domain display}
Send all values in the NRf format.

Query Syntax: MARKer[<spec>1[:X]:POINt?

Returned Format: <value><LF><~END>

<value>:=an integer (NI format)

Description:

The x-axis is divided into discrete points: 4¢1 points for frequency-domain displays, and 512
or 1024 points for time-domain displays. This command lets you define the x-axis position of
the main marker as a point number rather than a frequency or time.

You can either use numbers or one of two nonnumeric parameters to set the value of
MARK:X:POIN. The nonnumeric parameters are:

e UP - increases the value of MARK:X:POIN by one
* DOWN - decreases the value of MARK:X:POIN by one

If MARK:STAT is ON, this query returns the main marker’s current x-axis position as a
point number.

MARKI[:X]:SEARch selector

Description:

This command only selects the MARK:X:SEAR subsystem. Sending MARK:X:SEAR alone
does nothing.

7-127

Command Reference

MARK[:X]:SEAR:AMPLitude[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: -3.01 (display A)
1 (display B)

Example Statements: ouTpur 711;“Mark:B:X:Sear:Ampl 1V"
QUTPUT 71l; "markerl:x:search:amplitude 7.2deg”
CUTPUT 711; "MARK:A:X:SEAR:AMPL?"

Command Syntax: MARKer{<spec>][:X]:SEARch:AMPLitude <sp> <value>[<unit>]
<gpec>:=":A" |'B|1}2

< vglue>::1=a decimal number (NRf format)

<unit>: =any vertical units that are valid for the current display

Query Syntax: MARKer{ <spec>][:X:SEARch:AMPLitude?
Returned Format: <value> <LF><~END>

Description:

The analyzer can search for points along the specified trace that intersect a particular y-axis
value. Use this command to specify the target value for such a search.

When MARK:X:MODE is NCRM, the value you send with this command specifies the target
value for the search directly. The search is conducted for points on the trace that intersect
the specified y-axis value.

When MARK:X:MODE is DELT, the value you send with this command specifies the target
value for the search only indirectly. The value you send with this command is added to the
y-axis value of the marker reference to calculate the actual target value. The search is
conducted for points on the trace that intersect the caleulated y-axis value. This allows you
to search for y-axis values that are relative to the marker reference.

You can either use numbers or one of three nonnumeric parameters to set the value of
MARK:X:SEAR:AMPL. The nonnumeric parameters are:

¢ UP - increases the value of MARK:X:SEAR:AMPL by half the increment
between y-axis grid lines

* DOWN - decreases the value of MARK:X:SEAR:AMPL by half the increment
between y-axis grid lines

* (MARK[:A|:B]:VAL) - sets MARK:X:SEAR:AMPL to one of two values
depending on the marker mode selected. When MARK:X:MODE is NORM,
MARK:X:SEAR:AMPL is set to the y-axis value of the main marker. When
MARK:X:MODE is DELT, MARK:X:SEAR:AMPL is set to the difference between
the marker reference value and the main marker value.

7-128

Cormmand Reference

Once a target value has been specified, use MARK:X:SEAR:RIGH and MARK:X:SEAR:LEFT
to conduct the search.

The query returns the current value of MARK:X:SEAR:AMPL. Units for the value can be
returned with the DISP:SCAL:UNIT query.

MARK[:X]:SEAR:LEFT command

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: not applicable

Example Statementis: outpur 711;"Markl:X:Sear:Left”
oUTPOT 711;:"Marker:B:X:Search:Left”

Command Syntax: MARKer{<spec>][:X]:SEARch:LEFT
<gpec>iu=":A~|:B|1|2

Description:

This command moves the main marker left from its present position to the first occurrence
of the y-axis target value. If the target value is not found, the marker is not moved. The
target value is specified with the MARK:X:SEAR:AMPL command.

7-129

Command Beference

MARK[:X1:SEAR:RIGH? command

Overlapped: no

Detayed result: no

Pass control required: no
Power-up state: not applicable

Example Statemenis: ourpur 711;"MARK1:X:SEAR:RIGH"
OUTPUT 711; "Marker:B:X:Search:Right™

Command Syntax: MARKer[<spec>][:X]:SEARch:RIGHL
<spec>u="A~ |:B|1]|2

Description:

This command moves the marker right from its present position to the first occurrence of the
y-axis target value. If the target value is not found, the marker is not moved, The target
value is specified with the MARK:X:SEAR:AMPL command.

MARKI:X]:STATe[?] command/query

Overlapped: no

Delayed result: no

Pass control required: no
Power-up state: 1

Example Statements: ourpur 711;"mark2:stat off"
OUTPUT 711;"MARKER:A:X:STATE 1"
OUTPUT 711;"MARK:B:X:STAT?”

Command Syntax: MARKer[<spec>][:X]:5TATe<sp>{OFF|ON|0|1}
<sgpec>i="":A~ |:B|1]2

Query Syntax: MARKer[<spec>][:X]:STATe?
Returned Format: {0j1}<LF><"END>
Descripiion:

This command enables and disables the main marker for the specified display.

The query returns 0 if the specified display’s main marker is off, 1 if it is on.

7-130

Command Reference

MMEMory subsysiem

Description:

Commands in this subsystem are used to access the analyzer’s mass storage functions
(including such things as saving, recalling, and copying files). Many of the commands
require a mass storage specifier. The options are:

» RAM: — This specifies a BAM disc that uses some of the analyzer’s memory.

e INT: — This specifies the analyzer’s internal disc drive.

» EXT: — This specifies an external disc drive connected to the analyzer via the
HP-IB. The drive must use the SS/8C/HP-IB protocol.

In most cases, if you do not send a mass storage specifier with a command that
requires one, a default specifier is assumed. The default specifier is selected with the

MMEM:MSI command.

7-131

Command Reference

MMEM:COPRY command

Cverlapped: yes

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

NOTE Do not use this command to copy all files at once if the destination device contains
files you want to keep. Al files on the destination device are overwritten when you
specify an all-file copy.

Example Statements: ouTrur 711; "MMEM:COPY *RAM:’, ' INT:’"
OUTPUT 711; "MMEMORY:COPY *"RAM:MyFile"",""EXT:MyExtFile"""

Command Syntax: MMEMory:COPY<sp>{"|"} <source> {"|"},{’|"} <destination >
1"
<gource>1=EXT:|[INT:|[RAM: (when copying the entire contents of one mass storage
device to another)

[EXT:[INT:i RAM:}<filename> {(when copying a single file)
<gource> designates the mass storage device or {ile that will be copied.

<destination>=EXT:|INT:|RAM: (when copying the entire contents of one mass storage
device to ancther)

[EXT:|INT:|RAM:] <filename> (when copying a single file)

<destination > designates the mass storage device or file that will receive
the new copy

<filename=>::=1 to 10 printable ASCII characters

Description:

Use this commmand to copy files. You can copy files one at a time or you can copy all of the
files on one mass storage device to another device.

To copy one file, the name of the file you want to copy should be entered as the <source>.
The name for the new file should be entered as the <destination>. You must precede the
source filename with a mass storage specifier unless the file resides on the default mass
storage device. You must precede the destination filename with a mass storage specifier
unless you want the new copy to be placed on the default mass storage device. (Use the
MMEM:MSI query to determine the default device.)

To copy all files on one mass storage device to another device, the device containing the files
should be entered as the <source>. The device that will receive the new copies should be
entered as the <destination>.

When execution of this command requires access to the external mass storage device (EXT:),
the active controller on the HP-IB must temporarily pass control to the analyzer. When
execution of the command has been completed, the analyzer must pass control back. For
more information on passing control, see Chapter 2, “Behavior in an HP-IB System.”’

7-132

Command Reference

MMEM:DELete command

Overlapped: yes only for EXT:

Delayed result; no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: outpuT 711;"Mmem:Del 'RAM:’"
OUTPUT 711;"mmemory:delete ‘INT:imyspec'”

Command Syntax: MMEMory:DELete<sp>{" |"} <target>{’|"}

<target>:=EXT:|INT:|RAM: (when deleting everything from a mass storage device)

[EXT: | INT: |RAM:]I<filename> (when deleting one file from a mass
storage devicej

<filename>::=1 to 10 printable ASCII characters

Description:
Use this command to delete either one file or all files from a mass storage device.

To delete just one file, enter the filename as the <target>. You must precede the filename
with a mass storage specifier unless the file resides on the default mass storage device.
(Use the MMEM:MSI query to determine the default device.)

To delete all files from a mass storage device, enter the device specifier as the <target>.

When execution of this command requires access to the external mass storage device (EXT?),
the active controller on the HP-IB must temporarily pass control to the analyzer. When
execution of the command has been completed, the analyzer must pass control back. For
more information on passing control, see Chapter 2, “Behavior in an HP-IB System.”

7-133

Command Reference

MMEM:FORM[?] command/query

Gverlapped: no
Delayed result: ne

Pass control required: no
Power-up state: BIN

Example Statements: oureur 711;“Mmem:Form Bin"
ouTPUT 711; "Mnemory:Form Ascii”
oUTPUYT 711;"mmem:form?”

Command Syntax: MMEMory:FORM<sp>{ASCii | BINary}
Query Syntax: MMEMory:FORM?
Returned Format: {ASC{BIN}<LF><"~END>

Description:

This command selects the type of data encoding that will be used when files are saved. The
two types of encoding are ASCII and binary.

The option you select here is only needed when a file is saved using the analyzer’s
front-panel keys. This is because a data encoding type is already implied in the HP-IB
commands used to save files. For example, to save a trace into a binary-encoded file, use the
HP-IB command:

MMEM:STOR:TRAC ’trace 1’

To save the same trace into an ASCII-encoded file, use the HP-IB command:
MMEM:SAVE:TRAC *trace_1’

The query returns ASC or BIN depending on the option last selected.

7-134

Cormmand Reference

MMEM:GET selector

Description:

This command only selects the MMEM:GET subsystem. Sending MMEM:GET alone
does nothing.

Commands in the MMEM:GET subgystem are used to load either trace or setup information
into the analyzer from files on a mass storage device. All of the commands allow you to
specify the device on which files reside. If you do not specify a device, however, the default
device is assumed. {Use the MMEM:MSI query to determine the default device.)

When execution of a command requires access to the external mass storage device (EXT:),
the active controller on the HP-IB must temporarily pass control to the analyzer. When
execution of the command has been completed, the analyzer must pass control back. For
more information on passing control, see Chapter 2, “Behavior in an HP-IB System.”

There is no difference between comparable commands in the two subsystems MMEM:GET
and MMEM:LOAD subsystems. Whether the file is stored as ASCII or binary, a GET or
LOAD will read it in.

MMEM:GETDTARBIe command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements! ouTPUT 711;"MMEM:GET:DTAB1 *INT:MYTABLE' "
OUTPUT 711;"Mmemory:Get:Dtable:B ""EXT:myTable"""

Command Syntax: MMEMory:GET:DTABle[<spec>]<sp> {*|"}H <msi>]<filename>{"|"}

<spec>u=""1A7 [:B|1[2
<msi>nu=EXT:|INT: | RAM:

<filename>::=name of the file you want to load (the file must contain a data table)

Description:

Use this command to recall a data table from a file. The data table will be coupled to the
display specified in <spec>.

See MMEM:GET for more information.

7-135

Command Reference

MMEM: GET:LIMit command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ourPUT 71i; mmem:get:lim3 ""RAM:mylimit“"®
OUTPLFT 711; “MMEMORY :GET:LIMITS ‘INT:YOURLIMIT'™

Command Synta: MMEMory:GET:LIMit<spec> <sp> {’ |"}H <msi>l<filename> {'|"}

<spec>:=a single integer from 1to 8
<msi>=EXT:|INT: |RAM:

<filename>::=name of the file you want to load (the file must contain a limit table)

Description:

Use this command to recall a limit table from a file. Because the analyzer has places for
eight limit tables, you must use <spec> to indicate which table should receive the file.

See MMEM:GET for more information.

MMEM:GET-MATH command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT,
Power-up state: not applicable

Example Statements: ourpuT 711; "MMEM:GET:MATH ’'EXT:MYMATH' "
QUTPUT 71l1;"MMEMORY:GET:MATH ‘INT:befinition’”
Command Syntax: MMEMory:GET:-MATH<sp>{*["}H <msi>]<filename>{"|"}
<msiz>=FXT: [INT: |RAM:

<filename>::=name of the file you want to load (the file must contain math definitions)

Description:
Use this command to recall math definitions from a file.

The analyzer allows you to define five math functions and five constants. When you save or
recall a math file, you are saving or recalling all five function and constant definitions at
once. You can not save or recal] individual functions or constants.

See MMEM:GET for more information.

7-136

Command Reference

MMEM:GETSTATe command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: ves only for EXT:
Power-up state: not applicable

Example Statements: oureur 711;"Mmem:Get:Stat “"RAM:MYSTATE"®"
OUTPUT 711; "mmemory:get:state ""EXT:MyFile""™

Command Syntax: MMEMory:GET:STATe<sp> {"|"}H <msi>]<filename>{"|"}
<msi>=EXT: | INT: | RAM:

<filename>::=name of the file you want to load (the file must contain an instrument state)

Description:
Use this command to recall an instrument state (setup) from a file.

NOTE In adaition to setup information, instrument-state files include definitions for the
following items: all eight limit tables, both data tables, and all five math functions
and constants. As a result, the current definitions of these items are all overwritien
when vou recall an instrurment state.

Some of your measurements may require analyzer setups that are significantly different
from the preset state. If you make these measurements often, you may want to save the
special setups in instrument-state files. When you change from one setup to another,
you can save time by recalling an instrument state rather than sending many

individual commands.

See MMEM:GET for more information.

7-137

Command Reference

MMEM:GETTRACe commana

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: ves only for EXT:
Power-up state: not applicable

Example Statements: ovTPUT 711;"Mmem:Get:Trac ‘INT:tracetype’"
OUTPUT 711;"Mmemory:Get:Tracel ""BEXT:MYTRACE"""

Command Syniax: MMEMory:GET:TRACe[<spec>]<sp>{"|"}H <msi>]<filename> {*|"}
<gpec>i=":A" |:B[1]|2
<msi>n=FXT: | INT: {RAM:
<filename>:r=name of the file you want to load (the file must contain a trace)

Description:

Use this command to recall a trace from a file. The trace will be placed into the display
specified in <spec>.

See MMEM:GET for more information.

MMEM:iNITialize command

Overlapped: yes
Delayed result: no
Pass conirol required: yes only for EXT:
Power-up state: not applicable

Example Statemenis: ooTpuT 711;"MMEM:INIT ‘INT:MY DIR’™
QUTPUT 711; "Mmemorv:Initialize 'RBM:’"

Command Syntax: MMEMory:INITialize<sp>{’]*} <msi>[<volume name>]{’|"}
<msi>=FXT: |[INT:|{RAM:

<volume name>:=1 to 10 printable ASCII characters

Description:

Use this command to format the specified mass storage device. Formatting proceeds
according to selections last made with the MMEM:INIT:IINT and
MMEM:INIT:OPT commands.

When you format a device, you can give it a volume name. This is especially useful for
identifying the floppy discs you use in the analyzer’s internal disc drive. The name is
displayed on the analyzer’s screen when the catalog is turned on (SCR:CONT DCAT).

When execution of this command requires access to the external mass storage device (EXT:),
the active controller on the HP-IB must temporarily pass control to the analyzer. When
execution of the command has been completed, the analyzer must pass control back.

For more information on passing control, see Chapter 2, “Behavior in an HP-IB System.”

7-138

Command Reference

MMEM:INIT:INTerleave[?] command/query

Cverlapped: no
Delayed result: no

Pass control required: no
Power-up state; 1

Example Statements: ourpur 711; "mmem:init:int 17
OUTPUT 711;"MMEMORY:INITIALIZE:INTERLEAVE 5"
OUTPUT 711;"MMEM:INIT:INTZ?"

Command Syntax: MMEMory:INITialize:INTerleave <sp> <factor>

<factor>:=an integer from 1 through 255 (NBf format)

CQuery Syntax: MMEMory:INITialize:INTerleave?

Returned Format: <factor><LF>< ~END>
<factor>u=an integer (NR1 format)

Description:

This command lets you specify an interleave factor to be used when analyzer formats a mass
storage device.

During formatting, each track on a disc is divided into sectors, and the sectors are numbered
in a pattern determined by the interleave factor. The numbering pattern has an effect on the
efficiency of disc-read and disc-write operations.

For the analyzer’s internal dise drive, an interleave factor of 1 results in the most efficient
disc operations. If you use an external disc drive, you will need to check the drive’s
documentation to determine which interleave factor will work best.

You can either use numbers or one of two nonnumeric parameter to set the value of
MMEM:INIT:INT. The nonnumeric parameters are:

¢ UP — increases the current value of MMEM:INIT:INT by one
* DOWN - decreases the current value of MMEM:INIT:INT by one

The query tells you which disc interleave factor is currently selected.

7-139

Command Reference

MMEM:INIT:OPTion[?]

command/query

Example Statements: ourpuT 711;"MMEM:INIT:OPT 647
QUTEUT 711;"MMEMory:INITialize:0PTion 2567
OUTPUT 711; "MMEM: INIT:OPT?"

Command Syntax: MMEMory:INITialize:OP Tion<sp> <value>
<value>:=an integer from ¢ through 16777216 (NRf format)

Query Syntax: MMEMory:INITialize:OP Tion?

Returned Format: <valie>»<IF><~END>

<value>:=an integer (NR1 format)

Description:

Overlapped: no
Delayed result: no

Pass control required; no
Power-up state; 0

This command lets you specify the format option to be used when the analyzer formats a

mass storage device,

The format option is an encoded value whose meaning is dependent on the mass storage
device being formatted. If you are formatting an external disc drive, you must refer to its

documentation to decode the different format option values.

Format options 0 through 5 are used to allocate memory for the analyzer’s RAM disc (RAM:).
They are also used to allocate disc space on the analyzer’s internal disc drive. The amount of

mermory or disc space (in bytes) for these options are as follows:

RAM Internal
Option Disc Disc
Q 64k 640k
1 640k 640k
2 710K 710k
3 788k 788k
4 270k _—
5 640k 64k

When formatting the RAM disc, you can also use the MMEM:INIT:OPT command to directly
specify the amount of memory you want allocated for the RAM disc. In this case, <value> is
not encoded. It should contain the amount of memory you want allocated (in bytes). The
amount you specify is rounded up to the nearest multiple of 256 bytes. You can determine

how much memory is available for the RAM disc by sending SCR:CONT MEM and

examining the information displayed on the analyzer’s screen.

The query response tells you which option is currently selected.

7-140

Command Reference

MMEM:LOAD selector

Description:
This command only selects the MMEM:LOAD subsystem. Sending MMEM:LOAD alone
does nothing,

Commands in the MMEM:LOAD subsystem are used to load either trace or setup
information into the analyzer from files on a mass storage device. All of the commands allow
you to specify the device on which files reside. If you do not specify a device, however, the
default device is assumed. (Use the MMEM:MSI query to determine the default device.)

When execution of a command requires access to the external mass storage device (EXT:),
the active controller on the HP-IB must temporarily pass control to the analyzer. When
execution of the command has been completed, the analyzer must pass control back. For
more information on passing control, see Chapter 2, “‘Behavior in an HP-IB System.”

There is no difference between comparable commands in the MMEM:LOAD and
MMEM:GET subsystems.

7-141

Command Reference

MMEM:LOAD:APPLication command

Overlapped: yeg only for EXT:

Delayed result: no

Pass control required:; yes only for EXT
' Power-up state: not applicable

Example Statements: ourpuT 711; “MMEM:LOAD:APPL "“INT:myappll®""
OUTPUT 711; "MMEMORY:LOAD:APPLICATION 'EXT:MyAppl2’”
Command Syntax: MMEMory:LOAD:APPLication<sp> {’["}H<msi>]<filename > {*|"}
<msi>n=EXT: | INT: {RAM:

<« filename>::=name of the file you want to load (the file must contain an application
program written for the HP 356G60A)

Description:
Use this command to install an application from a file.

NOTE Applications that run on the HP 35660A may add some HP-IB commands that
are not described in this manual. See the application’s documentation for
more information.

See MMEM:LOAD for more information.

MMEM:LOAD:APPL:ALL command

Overlapped: yes only for EXT;

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Exampie Statements: ouTPur 711;"Mmem:Load:Appl:All ““INT:"""
OUTPUT 711;"MMEMORY:LOAD:APPLICATION:ALL ‘EXT:'"

Command Syntax: MMEMory:LOAD:APPLication:ALL<sp>{" "} {EXT:|INT: | RAM:}{*|"}

Description:
Use this command to install all applications that reside on the specified mass storage device,

NOTE Appilications that run on the MP 35880A may add some HP-IB commands that are
not described in this manual. See the application’s documentation for
more information,

See MMEM:LOAD for more information.

7-142

Command Reference

MMEM:LOAD:APPL:AUTO[?] command/query

Overlapped: no

BPelayed resuit: no

' Pass control required: no
Power-up state: saved in nonvolatile memory

Example Statements: ocuTpuT 711;"MMEM:LOAD:APPL:AUTO ON®
QUTPUT 711;"Mmemory:lLoad:Application:Auto 07
OUTPUT 711;"mmem:load:appl:auto?”

Command Syntax: MMEMory:LOAD:APPLication: AUTO<sp>{OFF{ON[0] 1}
Query Syntax: MMEMory:LOAD:APPLication: AUTO?
Returned Format: {0|1}<LF><"END>

Description:

This command allows you to specify whether or not applications should be loaded
automatically when you turn the analyzer on.

If MMEM:LOAD:APPL:AUTO is ON, any application whose name ends with “ LD" is
automatically loaded into the analyzer at power-up. First, the analyzer loads all such
applications from the internal disc drive. Then, if the analyzer is the system controller and
an external disc drive is connected to the HP-IB, the analyzer loads all such applications from
the external drive.

The option last specified with this command is saved in nonvolatile memory when you send
the SYST:SAVE command. This means that when you turn the analyzer off and then back
on, the state of MMEM:LOAD:APPL:AUTO does not change.

7-143

Command Reference

MMEM:LOAD:DTABIe command

Overiapped: yes only for EXT:

Delayed result: no

Pass conirol required: yes only for EXT:
Power-up state: not applicable

Example Statemenis: ourpuT 711;"Mmem:Load:Dtab? ""RAM:MYTABLE4™""
CUTPUT 711;"mmemory:load:dtable:a 'EXT:dataTable’”

Command Syntax: MMEMory:LOAD:DTABle[<spec>l<sp> {|"} [<msi>]<filename> {*|"}
<gpec>u=" A7 |:B|1]{2
<mai»n=EXT: [INT: |RAM:

<filename>:1=name of the file you want to load {the file must contain a data table)

Description:
Use this command to recall a data table from a file. The data table will be coupled to the
display specified in <spec>.

See MMEM:L.OAD for more information.

MMEM:LOAD:LIMit command

Overlapped: yes only for EXT:

Delayed resuft: no

Pass contral required: yes only for EXT:
Power-up state: not applicable

Example Statements: ourpur 711; Mmem:Load:Liml ¢INT:MYLIMIT'"
OUTFUT 711; "Mmemory:Load:Limit7 "“EXT:extlimit™""
Command Syntax: MMEMory:LCAD:LIMit<spec> <sp>{’|"H<msi>]<filename> {"|"}

<gpec>::=a single integer from 1 to 8
<msi>=EXT:[INT: |RAM:

<filename>::=name of the file you want to load (the file must contain a limit table)

Description:

Use this command to recall a limit table from a file. Because the analyzer has places for
eight limit tables, you must use <spec> to indicate which table should receive the file.

See MMEM:LOAD for more information.

7-144

Command Reference

MMEM:LOAD:MATH command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT:
Power-up staie: not applicable

Example Statements: ouTpUT 711; “MMEM:LOAD:MATH 'RAM:myMath'"
CUTPUT 711; "Mmemory:Load:Math 'INT:mathdef’”

Command Syntax: MMEMory: LOAD:MATH <sp>{’|"}[<msi>]<filename> {* |"}
<rosi>n=EXT:[INT: | RAM:

<filename>::=name of the file you want to load (the file must contain math definitions)

Description:
Use this command to recall math definitions from a file.

The analyzer allows you to define five math functions and five constants. When you save or
recall a math file, you are saving or recalling all five function and constant definitions at
once, You can not save or recall individual functions or constants,

See MMEM:LOAD for more information.

7-145

Command Heference

MMEM:LOAD:STATe command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: ouTpuT 711;"mmem:load:stat ""RAM:MyState"""
QUTPUT 711;"MMEMORY:LOAD:STATE “"BEXT:INST STATE"""

Command Syniax: MMEMory:LOAD:STATe<sp>{’|"}H <msi>]<filename>{'|"}
<msi>u=EXT:|INT: |RAM:

<filename>::=name of the file you want to load (the file must contain an instrument state)

Description:
Use this command to recall an instrument state (setup) from a file.

NOTE in addition to setup information, instrument-state files include definitions for the
following items: all eight limit tables, both data tables, and all five math functions
and constants, As a resulf, the current definitions of these items are all overwritten
when you recall an instrument state.

Some of your measurements may require analyzer setups that are significantly different
from the preset state. If you make these measurements often, you may want to save the
special setups in instrument-state files. When you change from one setup to another,
you can save time by recalling an instrument state rather than sending many
individual commands.

See MMEM:LOAD for more information.

7-146

Command Reference

MMEM:LOAD:TRACe command

Overlapped: yes only for EXT:

Delayed result: no

Pass control required: yes only for EXT:
Power-up state: not applicable

Example Statements: outpur 711; "MMEM:LOAD:TRAC "“INT:A TRACE"""
OUTPUT T711;:"MMEMORY:LOAD:TRACE 'RAM:mytrace’®

Command Syntax: MMEMory:LOAD:TRACe[<spec>]<sp>{"|"}H <msi>]<filename> {"|"}

<gpec>i=":A™[:B|1|2
<msi>=FEXT:|INT: [RAM:

<filename>::=name of the file you want to load (the file must contain a trace)

Description:

Use this command to recall a trace from a file. The trace will be called into the display
specified in <spee>.

See MMEM:LOAD for more information.

7147

Ceommand Reference

MMEM:MSI[7?] command/query

Overlapped: no

Delayed result; no

Pass control required: no

Power-up state: saved in nonvolatile memory

Example Statements: ouTpUT 711; Mmem:Msi 'RAM:’"
OUTPUT 711; "mmemory:msil ""INT:"""
QUTPUT 711; "MMEM:MSIZ?"

Command Syntax: MMEMory:MST<sp> {*["HEXT: [INT: JRAM:} {*]"}
Cuery Syntax: MMEMory:MSI?
Returned Format: YEXT:|INT: | RAM:}"<LF>«< ~END>

Description:

This command allows you te indicate which of the three mass storage devices will be the
default device.

Many commands in the MMEMory subsystem allow you to either include or omit & mass
storage specifier. When you omit the specifier, the default device is used.

The option last specified with this command is saved in nonvolatile memory when you send
the SYST:SAVE command. This means that when you turn the analyzer off and then back
on, the state of MMEM:MSI does not change.

The query tells you which mass storage device is currently specified as the default.

7-148

Command Reference

MMEM:MSI:ADDRess|7] command/query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: saved in nonvolatile memory

Example Statements: ocureuT 711; "Mmem:Msi:Addr 17
QUTPUT 711;"Mmemory:Msi:Address 6"
OUTPUT 711;"mmem:msi:addzr?”

Command Syntax: MMEMory:MSI:ADDRess<sp> <value >

<value>:=any integer x, where 0 = x = 7 (NRf format)

Guery Syntax: MMEMory:MSTADDRess?

Returned Format: <value><LF>< ~END>

<value>:=an integer (NR1 format)

Description:

Use this command to enter the address of an external disc drive (EXT:) connected to the
analyzer’s HP-IB. What you enter here must match the address setting of the drive’s
HP-IB address switches. (Refer to the disc drive’s documentation for the location of its
address switches.)

You can either use numbers or one of two nonnumeric parameters to set the value of
MMEM:MSE:ADDR. The nonnumerie parameters are:

* UP — increases the current value of MMEM:MSLADDR by one
* DOWN — decreases the current value of MMEM:MSI:ADDR by one

The option last specified with this command is saved in nonvolatile memory when you send
the SYST:SAVE command. This means that when you turn the analyzer off and then back
on, the state of MMEM:MSL:ADDR does not change.

The query returns the HP-IB address at which the analyzer expects to find the external
disc drive.

7-149

Command Reference

MMEM:MSEUNIT]?] command/query

Overlapped: no

Delayed result: no

Pass control required: no

Power-up state: saved in nonvolatile memory

Example Statements: ouTruT 711;"MMEM:MST:UNIT 1"
OUTPUOT 711;"Mmemory:MsisUnit 77
QUTPUT 711;"Mmem:Msi:Unit?"

Command Syntax: MMEMory:MSI:UNIT <sp> <value>

<value>::=any integer %, where 0 < ¢ = 15 (NRf format)

Guery Syntax: MMEMory:MSEUNIT?

Returned Format: <value><LF><~END>

<value>:=an integer (NR1 format)

Description:

This command allows you to indicate which unit of the external dise drive (EXT:) should be
used for mass storage.

If the external drive has one HP-IB port for more than one mass storage unit, each unit is
specified by a different number. For disc drives with only one mass storage unit, the unit
number is 0 (zero). See the disc drive’s documentation for more information on determining
the unit number.

You can either use numbers or one of two nonnumeric parameters to set the value of
MMEM:MSI:UNIT. The nonnumeric parameters are:

¢ UP — increases the current value of MMEM:MSI:UNIT by