Programming

Programming

« Remote Control

e Built-in VBA Programming

« TDR Remote Control (Option TDR)

« Command Reference

e TDR Command Reference (Option TDR)

997

E5071C

Remote Control

Remote Control

Overview

Setting up Analyzer

Performing Calibration

Making Measurement
Reading-Writing Measurement Data
Analyzing Data

Limit Test

Saving and Recalling

Communication with External Devices
Status Reporting System

Working with Automatic Test System
Sample Programs

Other topics about Programming

998

Overview

Overview

Types of remote control system
GPIB remote control system

LAN remote control system

USB Remote Control System
Sending SCPI command messages
LXI

Programming

999

E5071C

Types of remote control system

Depending on the system controller and the interface, you can configure 4
types of remote control system as shown in the table below.

System controller Interface Overview
System to control the E5071C and other
GPIB devices connected via GPIB from the

External controller
(external computer
such as PC and
workstation)

(talker/listener
mode)

external controller.
For more information, refer to GPIB
remote control system.

System to control the E5071C and other
devices connected via LAN from the
external controller.

For more information, refer to LAN
remote control system.

usB

System to control the E5071C and other
devices connected via USB from the
external controller.

For more information, refer to USB
Remote Control System.

E5071C

System to control the E5071C itself
using built-in E5071C VBA.

GPIB
(system controller
mode)

System to control the E5071C itself and
external devices connected via GPIB
using built-in E5071C VBA.

Other topics about Overview

1000

Programming

GPIB remote control system
o About GPIB
« System Configuration

Other topics about Overview
About GPIB

GPIB (General Purpose Interface Bus) is an interface standard for
connecting computers and peripherals, which supports the following
international standards: IEEE 488.1, IEC-625, IEEE 488.2, and JIS-C1901.
The GPIB interface allows you to control the Agilent E5071C from an
external computer. The computer sends commands and instructions to the
E5071C and receives data sent from the E5071C via GPIB.

System Configuration

Use GPIB cables to connect between the E5071C, the external controller
(computer), and peripherals. The following figure shows the overview of
the system configuration of the GPIB remote control system.

Configuration of the GPIB remote control system

Compute
Select Code '
GPIB Aioss
721
) . Select Code
p \ GPIB Address
7
GPIB
o0 00
Select Cods
GPIB Addisss
XX

Other Instruments

E30T1C3T7

While the E5071C is turned off, the SRQ status of the
E5071C is active. To prevent an incorrect operation on the SRQ
of the GPIB remote control system, disconnect the E5071C from
the system when the E5071C is turned off.

1001

E5071C

Required Equipment

« E5071C

o External controller (PC or workstation that can be connected to LAN
and Agilent I/O Library is installed into)

o Other devices (other instruments and/or peripherals that serve your
purpose)
o GPIB cables

Scale of system you can construct

e You can connect up to 15 devices in a single GPIB system.

o The length of cables to connect between devices must be 4 m or
less. The total length of connecting cables in a single GPIB system
must be 2 m x the number of connected devices (including the
controller) or less. You cannot construct the system in which the
total cable length exceeds 20 m.

e The number of connectors connected to an individual device must be
4 or less. If you connect 5 or more connectors, excessive force is
applied to the connector part, which may result in failure.

e You can choose the device connection topology from star, linear, and
combined. Loop connection is not supported.

Star Linear Loop
System System
Controller Controller
IO X0

Device selector

The device selector is a unique value assigned to each device that is used
by the controller to select the control target (to send/receive messages)
among devices connected on the GPIB remote control system.

The device selector consists of a select code (usually, 7) and a GPIB
address. For example, when the select code is 7 and the GPIB address is

1002

Programming

17, the device selector is 717. The select code must be set for each
system. The GPIB address must be set to a unique value for each device,
which is used to identify devices on the same system. In the description
and sample programs in this manual, it is assumed that the device selector

is set to 717.
Setting the GPIB address of E5071C

To set the GPIB address for talker/listener mode, See
Setting_talker_listener_GPIB_address_of E5071C.

1003

E5071C

LAN remote control system
e« Overview
« System Configuration
e Required Equipment
o Control over SICL-LAN Server
o Control using C or Visual Basic
o Control using Agilent VEE
o Control with Telnet Server

Other topics about Overview

Overview

The LAN (Local Area Network) remote control system provides two
methods: controlling the E5071C using the SICL-LAN server and controlling
the E5071C using the telnet server.

System Configuration

Use a LAN cable to connect between the E5071C and the external
controller (computer). The following figure shows the overview of the
system configuration of the LAN remote control system.

Configuration of the LAN remote control system

LAN Computer
P &deliess
IF Addiess
0000
- Other Instruments

eddT1g338

Required Equipment

1004

Programming

« E5071C
o External controller (PC or workstation that can be connected to LAN)

o Other devices (other instruments and/or peripherals that serve your
purpose)
o LAN cables
Control over SICL-LAN Server

In the control system using the SICL-LAN server, communication between

the external controller (client) and the E5071C (server) is performed using
the SICL-LAN protocol. Communication is performed using SICL (Standard
Instrument Control Library). You can control the E5071C by programming

using SICL or VISA with the C language in the UNIX environment, or Visual
C++, Visual Basic, or VEE in the Windows environment.

Preparing the E5071C

To communicate with the external controller, follow these steps to turn on
the SICL-LAN server of the E5071C in advance.

1. Turn on the SICL-LAN server of the E5071C.
System > Misc Setup > Network Setup > SICL-LAN Server [ON]

When the SICL-LAN server is turned ON for the first
time, the windows firewall setting dialog box appears. To use
the SICL-LAN server, select Unblock and click OK.

2. Set the GPIB address of the E5071C for control with the SICL-LAN
server. "XX" represents an address nhumber.

System > Misc Setup > Network Setup > SICL-LAN Address [XX]

3. By default, the SICL-LAN Address does not changes until the
firmware of E5071C is restarted.

Metwork Analyzer g|

L] "_-. Mew SICL-LAMN configuration will take effect after Firrmmare restart,
L

es071c137

4. On pressing any key, a message appears for restarting the firmware.
Click Yes to restart the firmware.

1005

E5071C

Metwork Analyzer |E|

L] "_-. D you want ko restark now?
L

es071c138

Preparing the external controller

In order to establish communication to the E5071C using the TCP/IP
protocol, you need to set the I/0O interface of the external controller in
advance. This section shows the setting procedure when using the external
controller in the Windows environment.

You must install the Agilent I/O Libraries on your PC
in advance. Use Agilent I/0O Libraries Suite 14.2 or later.

1. From your PC's Start menu, click Program > Agilent I/O Libraries Suite
> Agilent Connection Expert to open the Agilent Connection Expert
setting screen.

2. In the Agilent Connection Expert setting screen, select LAN(TCPIPO0)
in the Instrument I/O on this PC frame, and then click I/O Configuration
> Add Instrument.

1006

Programming

507 1c139

dd Ingtrumer

e53071c140

1007

E5071C

3. In the Add Instrument screen, select LAN (if it is not selected), and
then click OK.

- Add Instrume x
Choose the interface on which to manually add an instrurnent, To
automatically add interfaces and instruments, use Refresh

Interface Mame _Skatus Description

COM1 (ASRLLY Available R3-23Z serial interface

LAN (TCPIPO Byeailable LAN inketface

Remote (GPIEL) Available Remote GPIE {via ESS10 or Rem...
IISE[EPIE (GPIED) Available Agilent 32357 USE/GPIE Converker
IJSED IInawailable USE interfacels)

Interface status information:
Instruments may be added ko this interface

aF. Cancel Help

4

es071c141

4. In the LAN Instrument Properties screen, set up the IP address of the
E5071C and click OK. You can change settings as necessary. For
details, refer to the Agilent I/0 Libraries Suite documentation.

1008

Change configurable properties of this LaM device
Find Instruments. .. |
" Hostname: |
(+ 1P address: (146 [z08 | |16 a0
Advanced = |
WISA address: TCPIPO::146.208.116,90: insk0: INSTR
Test Connection The instrument was successfully opened
Identify Instrument | Agilent Technologies, ESO71C,LPROS,M,06,49,01 .40
@ Both the address check and the IDM query were done
[v Auko-identify this instrument
| Instrumnent ‘b Interface. . |
k. | Cancel Help
Vi
eh071cld2

Programming

5. In the Agilent Connection Expert screen, check that the E5071C has
been added under LAN(TCPIPO) in the Instrument I/O on this PC frame.

1009

E5071C

e5071c143

Control using C or Visual Basic

You can control the E5071C by programming using SICL with the C

language in the UNIX environment, or Visual C++ or Visual Basic in the
Windows environment.

Control using Agilent VEE

Agilent VEE allows you to control the E5071C via the I/0 interface. The
following example shows how to control the E5071C that is set as follows:
the address of the SICL-LAN server is 17 and the IP address is
146.208.116.90.

| NOTE | When using Agilent VEE for PC, use Agilent VEE Pro
7.5 for Windows or later.

1010

1. On the Agilent VEE's I/0 menu, click Instrument Manager

Data Display Excel

k Instrument Manager...
Advanced 10
Bus [0 Monitor

To

From

To/fFrom Socket
To/From DDE
Execute Program

Print Screen

e5071c146

2. In Instrument Manager, click Add...

Instrument Manager

Imstrument List At Discoveny
m Find instruments
Seftings..
Instrument
(™ a.)
Create VO Object
4 | |
ok | sae | cancel | Pint | Heip |
e5071c147

Programming

3. A new windows appears for the selection of Interface Type. Select

TCPIP and click OK.

1011

E5071C

Ok 4 Serial

e5071c148

4. In Instrument Properties, type any name for the Instrument in Name
(for example: ENA or E5071C), and add TCPIPO::<IP Address> in
the TCIP Address, where <IP Address> is the IP address for E5071C.
For example, if the IP address for E5071C is 146.208.116.90, then
the value for TCPIP Address would be TCPIP0::146.208.116.90. Click
OK after entering all the parameters.

Instrument Properties

Name: ES071C
Interface: | TCPIP
Board Mumber: | i
Alias: |

TCPIP Address: TCPIPD:146.208.116

Advanced. .

Ok | Cancel| Help |

e5071c149

5. The Instrument manager displays the connection with E5071C.

1012

Programming

Instrument Mana ger
Instrument List Auto Discaovery
_ﬂn My Configuration o P e I
—
= TCFIPD e I
] £5071 C(@TCPIPO:1 46.208.116.90) e
Settings...]
Instrument
Properies... |
LT
Remove I
Create O Object
Direct o |
J l |]
0K 1 Save Cancel | Print | Help | Load Samntel
e5071c150

The following figure shows an example of control using the I/O interface
that has been set in the above procedure.

1013

E5071C

_ Agilent VEE Pro - Example1.vee

0
-2
WRITE TEXT "CALC1PAR1DEF 8217 5TR EOL | Fra i 40
WRITE TEXT “SENS1 FREG.CENT 947 S5E6° STREQI q
WRITE TEXT "SENS1 FREQ:EPAN Z00EE" STR EQL B0
WAIT INTERVAL:3 Yhatal
WRITE TEXT “.CALC DATAFDATI ™ 5TR EOL B0
READ TEXT DataTrace REALEYS ARRAY. 201, 2 a0
WRITE TEXT " SENS1 FREG:DATAT EOL i
FEAD TEXT Freq REALGY ARRAY 201 DataTrace §— SO 900 M 16 1060
= Double-Click bo Add Transaclion = |
| X name
o - a]
= Fomula { ||
A [A{*.DJ | Resul
- |
(= } u]
Ready ExecMode: VEEGAT MoD

ed071c151
Control with Telnet Server

| NOTE | Port 23 is replaced by port 5024 in revision A.11.0x and
above. There is no change in port 5025.

In the control system over telnet server, communications are performed
through connection between the sockets provided by the processes of the
external controller and the E5071C to establish a network path between
them.

A socket is an endpoint for network connection; port 23 and port 5025 are
provided for the sockets for the E5071C. Port 23 is provided for
conversational control using telnet (user interface program for the TELNET
protocol) and port 5025 for control from a program.

| NOTE | To use telnet, port 23 and 5025 should be opened
through Windows firewall.

By opening port 23 and 5025, the E5071C can be
controlled remotely using telnet. It is recommended to close
port 23 and 5025 after usage from the security prospective.

Preparing the E5071C

To communicate with the external controller, follow these steps to turn on
the telnet server of the E5071C in advance.

System > Misc Setup > Network Setup > Telnet Server [ON]

1014

Programming

Conversational control using telnet (using port 23 for revision A.10.0x and below , and port 5024 for revision A.11.0x and above)

You can use telnet to perform conversational control by sending SCPI
commands to the E5071C on a message-by-message basis. For telnet, the
socket of port 23 is used for communications.

In this example, in order to show you the control procedure using telnet,
you control the E5071C (IP address: 146.208.116.90 and host name:
e5071c) from the external controller in the Windows environment.

1.
2.

Open the MS-DOS command prompt screen.

At the MS-DOS prompt, type telnet 146.208.116.90 or telnet e5071c
and press the return key.

. The telnet screen opens.
. Type a command and press the return key; it is sent to the E5071C

and executed. If you enter a command that queries some data, the
query response is displayed below the line you have entered the
command.

. The following figure shows the screen after using the :SYST:PRES

command to reset, the :SENS{1-36}:FREQ:STAR command and
:SENS{1-36}:FREQ:STOP command commands to set the sweep start
value and stop value to 1 GHz and 2 GHz respectively, and checking
the settings.

Example of control using telnet

SCPI> SYET:PRES

SCPI> zSENS1:FREQ:START 1E9
SCPI> -SEMS1:-FREQ:STOF 2E?
SCPI> -SEMS1:FREQ:-STAR?

+1 . ABABEBEBEAKRE +BAY
SCPI> :SEMS1:FREQ:STOF?
+2 . AlABERERHAKRE +BAY
SCPI >

Telnet 146.208.116.90

e5071c153

6.

Press] while holding down Ctl in the telnet screen to break the
connection to the E5071C. The telnet prompt appears. At the telnet
prompt, type quit and press the Enter key. The connection to the
E5071C breaks and telnet finishes.)

Control from a program (using port 5025)

1015

E5071C

When controlling the E5071C from a program on the external controller,
use the socket of port 5025 for connection.

Some functions such as service requests that are
available in the GPIB remote control system are not available in
control over telnet server.

Control using C or Visual Basic

You can control the E5071C by socket programming using the C language
in the UNIX environment, or Visual C++ or Visual Basic in the Windows
environment.

For socket programming, the library for network connection on the TCP/IP
protocol is required. For the UNIX environment, BSD (Berkeley Software
Distribution) Sockets API is available; for the Windows environment,
WinSock (WinSock1.1 and WinSock2.0) created by porting BSD Sockets to
Windows and expanding it is available.

For more information on the control method, see a sample program for
control using WinSock described in "Controlling Using Telnet Server".

Control using Agilent VEE

Agilent VEE allows you to control the E5071C through the connection to the
socket of port 5025 using To/From Socket. The following figure shows an
example (when the IP address of the E5071C is 146.208.116.90). Enter
5025 in Host Name to specify the port for connection (1 in the following
figure) and enter the IP address or host name of the E5071C in the field to
specify the host name (2 in the following figure).

1016

Programming

Example of control using Agilent VEE

-~ Agilent VEE Pro - Example?.vee

il AR S ARARE A EmLS R w

Bababibaosy

WRITE TEXT "CALC 1 PAR 1 DEF 5217 STR EOL
WRITE TEXT “SENS1 FREQUCENT 847 SEF STR EOL
WRITE TEXT "SEMNS1 FREQSPAN 200E6" TR EOL
WAIT INTERVAL 3

WRITE TEXT “CALC1 DATAFDATI 7 5TR EOL

READ TEXT DataTrace REALGA ARRAY201, 2 |
WRITE TEXT “SENS1 FREQDATAT EOL DataTrace —‘

REALD TEXT Frieq REALES ARRAY 201
= Dipublé=Click to Add Transachan =

Ready

ed0f1c152

1017

E5071C

USB Remote Control System
e Overview
« System Configuration

Other topics about Overview

Overview

The USB (Universal Serial Bus) remote control system provides device
control via USB, which is equivalent to control via GPIB. Connection is

made through an interface in compliance with USBTMC-USB488 and USB
2.0.

System Configuration

The USB remote control system controls instruments that use the name
"alias." There is no such address for GPIB connections.

Use a USB cable to connect the E5071C to an external controller (personal
computer). The following figure shows an overview of the system
configuration for the USB remote control system.

USB Remote Control System Configuration

Computer

LISE cable D

el ===S

L\

Ales Name Other Instruments

E30T 1300

Required Equipment

« E5071C
o External controller (PC with USB host port (type A)).

1018

Programming

o Other USB compatible devices (instruments and/or peripherals for
specific purposes).

e USB cable connecting E5071C and external controller (with type A/4-

prong male or type B/4-prong male connectors depending on device
used).

USB Port Types

There are two standard types of USB ports. The external controller (PC)
must be connected via the USB host port (type A), while the E5071C and
other USB compatible devices must be connected via the USB interface
port (type B).

Port Type Description

Type A: USB host port

Type B: USB (USBTMC) interface port

Preparing E5071C

You do not have to configure any softkey or command of the E5071C in
order to control the E5071C from an external controller. Simply connect a
USB cable to the USB interface port.

Preparing External Controller

In order to establish communication with the E5071C via USB, you must
set up the I/0O interface of the external controller in advance. The USB can
identify devices automatically, so once you connect a USB cable to a target
device, a dialog box will appear for USB device registration.

The E5071C will be identified as new device if its
serial number has been changed.

You must install the Agilent I/O Libraries on your PC
in advance. Use Agilent I/0 Libraries Suite 14.2 or later.

1. Setting E5071C when USB Cable Is Connected

1. When new device is connected via USB cable, the following dialog

box will appear automatically. Select No, not this time, and then click
Next.

1019

E5071C

Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard

‘windows wall search for current and updated software by
looking on your compuber, on Hhe hardeare installabion CD, o on
thee "winsdiowes: Ll pdate \Web sibe [with pour penmison]

E Iy

Can Windows connect bo Windows Update to seanch fo
solbware?

(1 s, this time: ordy

s

£ pow s evei ime | connect & device

(%) Mo, not thig time

Click Mesd to conbinue

[Mesd > || Cancel]

ed071c155

2. Select Install the software automatically (Recommended), and then click
Next.

Found New Hardware Wizard

Thiz wizaid helps pou mstall softwace for

USE Test and Measurerent Device

*] If your hardware came with an installation CD
e o Moppy disk, inzert it now.

‘what do pou wanl the wizsd to do?

 ® Instal the soitware sutomatically [Recommended)
3 Imstall From & et oo specih locaton [Advanced)

Click Mesd bo continue

i < Back][Hesxt » || Cancel]

e5071c156

3. The drivers for E5071B are automatically installed and the completion
screen appears. Click Finish to complete the process.

1020

Programming

Found New Hardware Wizard

Completing the Found New
Hardware Wizard

The wizard has fnished instaling the soltwate for
IE USE Test and Measurement Device

Chick Firszsh to cloze the wizard

e5071c157

2. Registering Alias

Just after finishing the setting, another screen appears that can be used to
change the Alias for the connected E5071C.

1021

E5071C

X

Assign USB device alias

Aline rame: I UshDeviceZ?

Identification: | Aglert Technologies ESO71C

¥isa Resource Mames:
Preferred | UshDewvice?

Alternate | USB0:: 2391 :: 3337 :MY00000001 ::0: :INSTR

SICL Address String:
Praferred | UshDevice2

Alernate | usbO[2391::3337::MYODO000001 ::0]

Showe this dialog
% Each time a USE device is plugged in.
" When a new USE device is plugged in.

" Mever show this dialog
[ok | conel]

e5071c158

| NOTE | For alias, use the ASCII format less than 127 digits.
Alias is upper/lower case insensitive.

| NOTE | If Never show this dialog is selected in Show this
dialog frame, the dialog box does not appear even if a new
device is connected.

| NOTE | Once new device is identified, the "New Hardware
Search Wizard" will start. Follow the instruction to implement
the processing.

3. Changing Alias on Setting Screen
The following are steps using the Agilent I/0 Libraries Suite 14.2.

1. From the Start menu of your PC, click Programs > Agilent IO Libraries
Suite > Agilent Connection Expert to open the Config setting screen.

2. In the Config setting screen, select the alias names from USBO0
onward in the Instrument I/0 on this PC frame, and then use the
Change Properties from 1/0 Configuration on the menu bar.

Changing Alias

1022

Programming

Ly —

& Refiesh Al 22% Undo o] Propeties 18 Intevactive 10 B Add Instrument 39 Add Intedace 9 Delete
it i o e) S —
A VISA alias for an nstrument. This alias can be used as the
VIS4 name of the instrument in a program.
= B, Az
9 comi (ASRLL) Gor b the rstrumen node ba wiew instrumsn information
A, LAy (TCPIFD)
= W ESOTIC (LISED:: 2391 A7 MYDOOO0G01 0::INSTR)
%, I Alias: UshDevice?
This abas refers to the following instrumenk;
WISA Address: LISBO: 2390 03T MYCADOO0CE 1 10: INSTR
1D string: Agient Technologies, ES071C, MYODOO0DOL
» VISA Ali | R iglent Techrologes
at configurable Model code: EROTIC
Sarial numbar: MYOOD00001
WISA abas: LishDevicaz] [Firmmsare neision: .06, 45.01 40
VISA address: CGEJ?HLHSP.HMIHMTR
=i S Mylnstrument
Lok J[Conced] I_w,'-;!’a @ Hyatas
£ *
Aghent VISA iz The pemasy VISA By
e5071c145

Control using C or Visual Basic

You can control the E5071C by programming using Visual C++ or Visual

Basic in the Windows environment as well as SICL/VISA.For further

information on controlling the E5071C, see the manual of SICL or VISA.

For Agilent I/O Libraries, use Agilent I/O Libraries Suite 14.2 or later.

You may use alias in the programming using SICL/VISA.

The following example shows an OPEN command to control the E5071C to

which alias is given as ENA_USBIF.

SICL | id = iopen("ENA_USBIF")

VISA | viOpen(...,"ENA_USBIF",...)

For further details of the programming using
SICL/VISA, see the SICL Users Guide or the VISA Users Guide.

Control using Agilent VEE

1023

E5071C

Agilent VEE allows you to control the E5071C via the direct I/0O interface.
The following example shows how to control the E5071C to which alias is
given as ENA_USBIF.

| NOTE | When using Agilent VEE for PC, use Agilent VEE Pro 7
for Windows or later version.

1. On the Agilent VEE's I/0 menu, click Instrument Manager.

Data Display Excel

k Instrument Manager...
Advanced [0 L
Bus [0 Monitor

To r
From k
To/fFrom Socket

To/From DDE

Execute Prograrm

Print Screen

e5071c146

2. In Instrument Manager, click Add...

Instrument Manager

Instrument List Auto Discovery
M Find Instrurments
Seftings..

Instrument

D

Create IO Object

__Directlis |

il I]

ok | sae | cancel | Pt | Help | |
e5071c147

3. A new windows appears for the selection of Interface Type. Select
USB and click OK.

1024

Programming

Add Interface/Device

Interface Type:
OK Zdq Serial
—] GPIO
Wl
TCPIP
eb071c154

4. In Instrument Properties, type any name for the Instrument in Name
(for example: ENA_USBIF or E5071C_USB), and add USB Address in
the USB Address. Click OK after entering all the parameters.

Instrument Properties

Marne: [EM&_USBIF
Interface: | UsSH =l
Board Mumber: | i i
Alias: EMA_USBIF
LUSH Address: USB0:2391:3337 My

Advanced...

Ok | Cancel| Help|

e5071c181

The USB address can be retrieved from Agilent
Connection Expert.

= 2
L, | Al (TCPIPO)
=% useo
§= 550?1@50::2391::333?::M~mnnnnnn1::D::INS@
USE Address
es071c159

1025

E5071C

5. The E5071C successfully appears in the Instrument Manager.

Instrument Manager
Instrurnant List Aarlo Discowary

and Seftings\gurpsingiLocal Settin

Configung DFivers
Bemings...

Instrurment
Proparties._..
Add._.
Remove

Create U0 Object
Diirect WO

1 | i
0K | Save | Cancel | Print | Help |l.uaﬂ$ample

ed0f1c182

1026

Programming

Sending SCPI command messages

o« Type and Structure of Commands

e Grammar of Messages

« Remote Mode

Other topics about Overview

Type and Structure of Commands

The SCPI commands available for the E5071C are classified into 2 groups
as follows.

E5071C commands

Commands specific to the E5071C. They cover all measurement functions
that the E5071C has and some general-purpose functions. The commands
in this group are arranged in a hierarchical structure called the command
tree. Each command consists of character strings (mnemonics) indicating
each hierarchical level and colon (:) separators between hierarchical levels.

IEEE common commands

Commands to cover general-purpose functions defined in IEEE488.2 that
are available commonly to instruments that support this standard. The
commands in this group have an asterisk (*) at the beginning. For the
commands in this group, there is no hierarchical structure.

Concepts of the command tree

The commands at the top of the command tree are called "root command"
or simply "root." To access lower level commands in the tree, you need to
specify a specific path like a directory path in the DOS file system. After
power-on or reset, the current path is set to the root. Special characters in
messages change the path setting as described below.

Message terminator

A message terminator such as the
<new line> character sets the current path to the root.

Colon (:)

A colon between 2 command mnemonics lowers the level of the current
path in the command tree. A colon used as the first character of a
command specifies the command mnemonic that follows as the root-level
command.

Semicolon (;)

A semicolon does not change the current path and separates 2 commands
in the same message.

1027

E5071C

The following figure shows an example of how to use colons and
semicolons to efficiently access commands in the command tree.

Using colons and semicolons

AA
|
I I |
BB cc DD
| |
1 [|
EE FF GG HH JJ
;'RI D
1y /Aace

F:“‘IDDNN-

2) iﬁ BR'EEFFGG

Py

ﬁ)DD'N

3} 'AATDD: HH JJ

;5' DD NE'?RJ' D
4} AL BB EE,.% DD JJ

eS0T 16350

Grammar of Messages

(R) Sets current path
fo ROOT

(N) No change to
current path

D' Sets current path
DOVYN one leval

This section describes the grammar to send program messages via GPIB.
Program messages are messages that the user sends to the instrument
from the external controller to control the instrument. A program message
consists of 1 or more commands and their necessary parameters.

Upper/lower case sensitivity

Upper/lower case insensitive.

Program message terminator

A program message must be terminated with one of the 3 program
message terminators: <new line>, <~END>, or <new line></~END>.
</~END> indicates that EOI on the GPIB interface becomes active at the
instant when the immediately previous data byte is sent. For example, the

1028

Programming

OUTPUT command of HTBasic automatically sends the message terminator
after the last data byte.

Parameters

A space (ASCII code: 32) is required between a command and its first
parameter. When sending several parameters in a single command,
separate each parameter with a comma (,).

Message including several commands

When sending 2 or more commands in a single message, separate each
command with a semicolon (;). The following example shows how to send
the *CLS command and the :STAT:PRES command in a single message
using HTBasic.

OUTPUT 717,;"*CLS; :STAT:PRES"

Remote Mode

The E5071C does not provide remote mode. Therefore, even if you send a
GPIB command, it never enters into remote mode automatically. There is
no local key to release remote mode.

If you need to prevent misoperation during remote control due to entry
from the front panel or mouse, lock the input devices using the following
commands.

e :SYST:KLOC:KBD
e :SYST:KLOC:MOUS

1029

E5071C

LX1

The E5071C is LXI-C compliant from firmware revision A.08.00 onwards.
About LXI

LXI (LAN eXtensions for Instrumentation) is the LAN-based successor to
GPIB and combines the advantages of Ethernet with the simplicity and
familiarity of GPIB. The key features of LXI are as follows:

o The speed, simplicity, worldwide reach, low cost, ongoing
enhancement and backward compatibility of LAN.

« Quick, easy configuration through the intuitive web interface built
into compliant instruments.

« Simplified programming and greater software reuse through IVI
drivers.

o The ability to create hybrid systems that include LXI, GPIB, VXI, PXI,
CANbus, etc.

o Enhanced system performance and event handling via hardware- and
LAN-based triggering modes.

« Synchronization of local and remote instruments through the IEEE
1588 precision time protocol.

o For more information on LXI, please visit www.Ixistandard.org
Checking LXI Compliance

The E5071C having LXI compliance will show a LXI logo at the start up

screen of the firmware . If this logo does not appears at the start
up screen of the firmware, it means that the system is not LXI-C
complaint.

Files Required for LXI with HDD revision CN70x

The HDD revision CN70x does not comes with installed Dot Net
architecture which is a requirement for LXI. User having HDD revision
CN70x need to install the required components for LXI on the E5071C, and
then update the firmware to A.08.00 or later to use LXI-C functionality.

1. Update the E5071C with the latest Firmware revision if your firmware
revision is A.07.0x.

2. LXI works only on Dot Net platform. To install dotnet framework and
other software required for LXI, download the file ENALXISetup from
www.agilent.com/find/ena support, and then execute it to install all the
required components for LXI on the E5071C.

1030

Setting up Analyzer
Setting up Analyzer

Selecting the Active Channel/Trace
Configuring Measurement Conditions
Configuring Display Settings

Saving and Loading the Settings

Programming

1031

E5071C

Selecting the Active Channel/Trace

You can configure the E5071C by using various commands. Some
commands require you to specify and work with a particular channel or
trace, while other commands do not have this restriction.

Those commands that do not require you to specify a particular channel or
trace apply to the currently active channels and traces. Therefore, before
issuing such a command, you must make the appropriate channels and
traces active.

To make a channel active, use the following command:
:DISP:WIND{1-160}:ACT
Only the currently displayed channels can be active

channels. Therefore, you must display the desired channels by
using the :DISP:SPL command before making them active.

To make a trace active, use the following command:
:CALC{1-160}:PAR{1-16}:SEL
Only the currently displayed traces can be active
traces. Therefore, you must display the desired traces by using

the :CALC{1-160}:PAR:COUN command before making them
active.

If you are using E5071C revision A.9.60 and above, you can select a trace
by the trace name, provided it has been defined earlier. To define a trace
name, use the following command:

:CALC{1-160}:PAR{1-16}: TNAMe:DATA

If the trace name is not defined but used, the
following error occurs:

'51, Specified trace does not exist'

If the defined trace name already exist, the following
error occurs:

'63, Duplicate trace name'

If you are using E5071C revision A.9.60 and above, you also have an
option to select the trace directly by using TRAC{1-16} for all SELected
commands. As such, you do not need to make a trace active before
assigning a command to it.

For example, to activate marker 3 in trace 2, channel 1:

In E5071C revision A.9.60 and above:
‘CALC1L:TRAC2:MARK3:ACT

1032

Programming

In E5071C revision A.9.5x and below:
‘CALC1:PAR2:SEL
:CALC1:MARK3:ACT

Other topics about Setting up Analyzer

1033

E5071C

Configuring Measurement Conditions

e Setting the Number of Traces

o Selecting Measurement Parameters

e Setting Sweep Condition (Stimulus)

o« Configuring Averaging Settings
o Setting the System Z0

Other topics about Setting up Analyzer

Setting the Number of Traces

When you set the number of traces, that setting determines the upper limit
trace number; for example, if the setting is 3, traces 1 through 3 will be
displayed. To set the number of traces, use the following command:

:CALC{1-36}:PAR:COUN
Only the currently displayed traces can be active
traces. Therefore, you must set the number of traces
appropriately before making them active.

Selecting Measurement Parameters

To select the measurement parameter (S parameter) for each trace, use
the following command:

:CALC{1-36}:PAR{1-36}:DEF

When you use the Balance-Unbalance Conversion feature, you can select
the mixed mode S parameter as well. For more information, refer to
Analysis Using the Fixture Simulator.

Setting Sweep Condition (Stimulus)

How you can set the sweep condition depends on the sweep type. You can
choose between the following four sweep types:

e Linear sweep

e Log sweep

e Segment sweep

« Power sweep
To select one of the above sweep types, use the following command:
:SENS{1-36}.SWE:TYPE
To select the sweep mode (stepped/swept), use the following command:
:SENS{1-36}.SWE:GEN

Turning On/Off stimulus signal output

1034

Programming

To turn on/off the stimulus signal output, use the following commands. For
example, if the power output is automatically turned off due to the power
trip feature, remove the cause of the over-input and turn on the stimulus
signal output by executing the following command. You cannot perform
measurement until you turn on the stimulus signal output.

:OUTP

Configuring linear/log sweep settings

To set the sweep range, use the following commands:

Type Command
Start value :SENS{1-36}:FREQ:STAR
Stop value :SENS{1-36}:FREQ:STOP

Center value :SENS{1-36}:FREQ:CENT

Span value :SENS{1-36}:FREQ:SPAN

To set the humber of measurement points, use the following command:
:SENS{1-36}:SWE:POIN
To set the sweep time, use the following commands:

Type Command

Sweep time :SENS{1-36}:SWE:TIME

Turning on/off auto setting :SENS{1-36}:SWE:TIME:AUTO

To set the sweep delay time, use the following command:
:SENS{1-36}:SWE:DEL

To set the IF bandwidth, use the one of the following commands (both
provide the same function):

'SENS{1-36}:BAND
'SENS{1-36}:BWID

Setting power level

To set the power level, use the following command:
:SOUR{1-36}:POW

To select whether to output the same power level (the set value for port 1)
or a different power level for each port, use the following command:

1035

E5071C

:SOUR{1-36}:POW:PORT:COUP
:SOUR{1-36}:POW:PORT{1-4}
To set the correction of power-level attenuation so that it's proportional to
the frequency (power slope feature), use the following command:
:SOUR{1-36};POW:SLOP:STAT
:SOUR{1-36}.:POW:SLOP
If you turn on the power slope feature, the sweep
mode is changed to the step mode.

Configuring segment sweep settings

When you opt to use segment sweep, you can set all items (in the segment
sweep table) by using a single command:

'SENS{1-36}:SEGM:DATA

Alternatively, you can configure the segment sweep settings based on the
data contained in a CSV file by issuing the following command:

:MMEM:LOAD:SEGM

Also, you can save the contents of the current segment sweep table to a
file by issuing the following command:

‘:MMEM:STOR:SEGM

For more information on how to save and load the segment sweep table,
refer to Saving and recalling the segment sweep table.

Configuring power sweep settings

To set the sweep range, use the following commands:

Type Command
Start value :SOUR{1-36}:POW:STAR
Stop value :SOUR{1-36}:POW:STOP

Center value :SOUR{1-36}:POW:CENT

Span value :SOUR{1-36}:POW:SPAN

To set the fixed frequency (CW frequency), use the following command:
:SENS{1-36}:FREQ

To set the number of points, the sweep time, the sweep delay time, and
the IF bandwidth, use the same commands as for the linear/log sweep.
Configuring Averaging Settings

1036

Programming

To configure the averaging settings, use the following commands:

Type Command

On/off 'SENS{1-36}:AVER

Averaging factor | :SENS{1-36}:AVER:COUN

Clear (Restart) :SENS{1-36}:AVER:CLE

For averaging, normally, the instrument must be triggered according to the

number of averaging; however, when the averaging trigger is turned on,

sweeps for the number of averaging can be executed by a single trigger.

For details on the averaging trigger, refer to Averaging Trigger Function.
Setting the System Z0

This function is available with the Firmware revision
3.01 or greater.

To set the system characteristic impedance (Z0), use the following
command:

:SENS:CORR:IMP

1037

E5071C

Configuring Display Settings
o Setting the Layout of Windows and Graphs

e Configuring Trace Display Settings
o Setting Display Color

Other topics about Setting up Analyzer
Setting the Layout of Windows and Graphs

You can split the E5071C's LCD screen into multiple windows that display
channel-specific result information, and the window layout can be selected
from a number of variations. In addition, you can place on screen a
segment sweep table or echo window, which you can use to display
messages from your custom program.

Selecting the window layout (Channel Display Mode)

One window displays the results for a single channel. You cannot have a
single window display the results from more than one channel. This means
that setting the window layout determines the number of channels
displayed on screen.

To select one of the 19 different window layouts shown in the figure below,
use the following command:

:DISP:SPL

Selecting the graph layout (Trace Display Mode)

You can place a number of trace graphs in each window by selecting one of
the pre-defined graph layouts. The number of graphs differs depending on
your selected graph layout. If the number of graphs is equal to or larger
than the number of traces (set by the :CALC{1-36}:PAR:COUN command),
each graph always displays one trace. On the other hand, if the number of
graphs is smaller than the number of traces, some of the graphs display
two or more traces. Graph 1 is populated with trace 1, graph 2 with trace
2, and so on. Traces whose numbers exceed the last graph's number will
populate graph 1, graph 2, and so on.

To select one of the 19 different graph layouts shown in the figure below,
use the following command:

:DISP:WIND{1-36}:SPL

Maximizing a window or a trace graph

1038

Programming

When you have multiple windows displayed, you can maximize the active
channel window so that it covers the entire screen area. To maximize a
window, use the following command:

:DISP:MAX

Similarly, when you have multiple traces displayed, you can maximize the
active trace so that it extends throughout the entire window. To maximize
a trace, use the following command:

:DISP:WIND{1-36}:MAX
Window/graph layouts and command parameters

1039

E5071C

o [
A sngls gragh
2 0y 112 o112
chawdisz | |, |] | q
Z giliens 3 -
[H2% D12 3 D12 33 0123 DM% 23 D12_18

=T Ed B4 Ed H1 [H

_ 124 12 x4 D12 54
ﬁ?n;ﬁ‘h IH 7 H E [I]E 1= 1&:_51Iﬂnna|ﬁﬁam f#
4 guaphs e — mml DR Command Parameter

CMZs 400 D12 34 /6

2 KN EN

R, "EH usy

g araghs L3 X K FEIr®1

e
& giaphis

ﬂ;ﬁ‘ia

¥ gicphic

ﬂlrw;i 13

ar
13 amaghs

cranel 118

16 paphs

eS0T 10314

Showing/hiding a table or echo window

You can display the following items at the bottom of the LCD screen:
« Segment sweep table
o Limit table
o Marker list table

1040

Programming

o Echo window (a window that displays messages from a custom
program)
e Loss compensation table
o Power sensor's calibration factor table
To show or hide each of the above items, use the following command:
:DISP:TABL

You cannot have two or more of the above items displayed at a time. The
screen displays only the selected item by using the following command:

:DISP:TABL:TYPE

Showing/hiding softkey labels

You can show or hide the softkey labels placed alongside the right-hand
edge of the LCD screen. To show or hide the softkey labels, use the
following command:

:DISP:SKEY

Configuring Trace Display Settings

Selecting which traces to display

Each trace has two different representations: data and memory traces. You
can show or hide the data and memory traces independently of each other.
To show or hide the data or memory traces, use the following commands:

Type Command

Data trace :DISP:WIND{1-36}. TRAC{1-36}:STAT

Memory trace :DISP:WIND{1-36}: TRAC{1-36}:ANN:MARK:POS:X

To copy the data trace to the memory trace, use the following command:
:CALC{1-36}:MATH:MEM

Configuring cross-trace math operations

You can perform math operations between the data and memory traces
and have the results displayed as the data trace. To perform cross-trace
math operations, use the following command:

:CALC{1-36}:MATH:FUNC

Configuring smoothing settings

To turn on/off smoothing, use the following command:

1041

E5071C

:CALC{1-36}:SMO

The smoothing aperture is expressed as a percentage with respect to the
sweep range. To set the smoothing aperture, use the following command:

:CALC{1-36}:SMO:APER

Selecting the data format

You can select the following data formats:

= Rectangular display formats

Log magnitude format
Phase format

Group delay format
Linear magnitude format
SWR format

Real format

Imaginary format
Expanded phase format
Positive phase format

» Smith chart format

= Polar format

To select the measurement parameter data format, use the following

command:

:CALC{1-36}:FORM

Configuring the display scale

Depending on the measurement parameter data format, you can configure
the display scale in one of the following two ways:

Rectangular display formats:

When you use one of rectangular display formats (Logarithmic
magnitude/Phase/ Group delay/Linear
magnitude/SWR/Real/Imaginary/Expanded phase/Positive phase), you can
configure the display scale by setting the following four items:

Type Command
Number of :DISP:WIND{1-36}.Y:DIV
divisions

1042

Programming

Scale per :DISP:WIND{1-36}: TRAC{1-36}.Y:PDIV
division

Reference :DISP:WIND{1-36}: TRAC{1-36}:Y:RPOS
graticule line

Reference :DISP:WIND{1-36}: TRAC{1-36}.Y:RLEV
graticule line
value

The number of divisions is a channel-wide setting
(shared among all traces), while the remaining three settings
are trace-specific.

You can show or hide graticule label (the label on the left-hand side of the
graticule lines) by issuing the following command:

:DISP:WIND{1-36}:LAB

Smith chart/Polar formats:

When you are using one of Smith chart/Polar formats, you can only set the
full scale value (the outermost circle's value) using the following
command:

:DISP:WIND{1-36}: TRAC{1-36}:Y:PDIV

Auto Scale

You can use Auto Scale to automatically set the display scale. This feature
works by automatically adjusting the reference division line value and the
scale value per division when you are using one of the rectangular display
formats or the full scale value when you are using one of Smith chart/Polar
formats.

To perform Auto Scale, use the following command:
:DISP:WIND{1-36}: TRAC{1-36}:Y:AUTO

Displaying a message in the echo window

You can display a message in the echo window by issuing the following
command:

:DISP:ECHO

You can clear any message displayed in the echo window by issuing the
following command:

:DISP:ECHO:CLE

1043

E5071C

Turning On/Off display update

To turn on/off the update of the LCD screen, use the following command:
:DISP:ENAB

Showing/hiding frequencies

To show or hide frequencies on the LCD screen, use the following
command:

:DISP:ANN:FREQ

Showing or hiding the title

To show or hide the title, use the following command:
:DISP:WIND{1-36}.TITL

To define the title string that appears in the title display area, use the
following command:

:DISP:WIND{1-36}:TITL:DATA

Configuring date/time display

To show or hide the current date and time on the right-hand side of the
instrument status bar, use the following command:

:DISP:CLOC

To set the date and time, use the following command:
:SYST.DATE

:SYST:UPR

Turning On/Off the LCD backlight

To turn on/off the LCD backlight, use the following command (note that
turning off the backlight makes the screen unreadable):

:SYST:BACK
Setting Display Color

Selecting Display Mode

You can select the one of two LCD display modes: normal display (black
background) or inverted display (white background).

To select the display mode, use the following command:
:DISP:IMAG

Setting display color for each item

1044

Programming

To set the display colors, use the following commands:

Data trace :DISP:COL{1-2}:- TRAC{1-36}:DATA

Memory trace :DISP:COL{1-2}:- TRAC{1-36}:MEM

Graph :DISP:COL{1-2}:GRAT{1-2}
Limit test :DISP:COL{1-2}:.LIM{1-2}
Background :DISP:COL{1-2}:BACK

Resetting display colors to factory state

You can reset the display colors in normal display and inverted display to
the preset factory state.

To reset the display colors, use the following command:
:DISP:COL{1-2}:RES

1045

E5071C

Saving and Loading the Settings

You can save the settings for measurement conditions and screen display
to a file along with other instrument settings, and these settings can later
be loaded from the file.

Once you have saved the measurement condition and screen display
settings to a file, you can later load them whenever necessary; therefore,
you can quickly modify the settings loaded from a file to create new
settings without having to issue many commands.

To save the current settings to a file, use the following command:
‘MMEM:STOR

To load the settings from a file, use the following command:
‘MMEM:LOAD

Other topics about Setting up Analyzer

1046

Performing Calibration
Performing Calibration

Calibration

Power Calibration
Receiver Calibration
Scalar-Mixer Calibration
Partial overwrite

Programming

1047

E5071C

Calibration
e Overview
e Performing Calibration

o« Defining Calibration Kits

o Standard Definitions

e Reading/Writing Calibration Coefficient Alone
o Clearing Calibration Data and Calibration Coefficients

Other topics about Performing Calibration

Overview

You need to execute calibration to eliminate error elements related to
measurement, thus allowing you to perform accurate measurement.

Performing Calibration (Obtaining calibration coefficients)

Selecting a Calibration Kit

To select a calibration kit, use the following command:
:SENS{1-160}.CORR:COLL:CKIT

Selecting a Calibration Type

The calibration coefficients are calculated based on the selected calibration
type. Therefore, before you can calculate the calibration coefficients, you
must select the appropriate calibration type by using one of the following
commands.

Calibration type Command
Response OPEN :SENS{1-160}:CORR:COLL:METH:OPEN
SHORT :SENS{1-160}:CORR:COLL:METH:SHOR
THRU :SENS{1-160}:CORR:COLL:METH:THRU
Enhanced Response :SENS{1-160}:CORR:COLL:METH:ERES
1-Port :SENS{1-160}:CORR:COLL:METH:SOLT1
Full 2-Port :SENS{1-160}: CORR:COLL:METH:SOLT2
Full 3-Port :SENS{1-160}: CORR:COLL:METH:SOLT3
Full 4-Port :SENS{1-160}:CORR:COLL:METH:SOLT4
2-Port TRL :SENS{1-160}:CORR:COLL:METH:TRL2

1048

Programming

3-Port TRL :SENS{1-160}:CORR:COLL:METH:TRL3

4-Port TRL :SENS{1-160}:CORR:COLL:METH:TRL4

To calculate the calibration coefficients for the
simplified full 3-port and simplified full 4-port calibrations, select
the full 3-port and full-4 port commands, respectively. To
calculate the calibration coefficient for the simplified 3-port TRL
calibration and the simplified 4-port TRL calibration, select the
3-port TRL and the 4-port TRL commands, respectively.

To check the currently selected calibration type, use the following
command:

:SENS{1-160}:CORR:COLL:METH:TYPE?

Setting the trigger source for calibration

To set the trigger source for calibration, use the following command. By
setting the trigger source for calibration to "System," setting the trigger
source for measurement to "External," and turning on the point trigger
function, it becomes possible to use "calibration for each measurement
point using the external trigger."

:SENS{1-160}.CORR:TRIG:FREE

The trigger source for calibration does not function
for the calibrations of E-Cal, power, receiver, and scalar mixer.

Measuring Calibration Data

To measure the calibration data, use one of the following commands:

Calibration data items Command

OPEN :SENS{1-160}:CORR:COLL:OPEN
SHORT :SENS{1-160}: CORR:COLL:SHOR
LOAD :SENS{1-160}: CORR:COLL:LOAD
THRU :SENS{1-160}:CORR:COLL:THRU
Isolation :SENS{1-160}:CORR:COLL:ISOL

TRL Thru :SENS{1-160}:CORR:COLL:TRLT
TRL Reflection :SENS{1-160}:CORR:COLL:TRLR
TRL Line/Match :SENS{1-160};:CORR:COLL:TRLL

1049

E5071C

You cannot run more than one of the commands

listed above at a time; if you issue another command before the
currently running command completes successfully, the current
command will be aborted. Therefore, when you write a program
that issues multiple calibration commands in series, you should
use the *OPC? command or some other means to ensure that
no command is executed before the preceding command
completes itself.

As shown in the table below, the data required to calculate the calibration
coefficients differ depending on the selected calibration type.

Calibration type Data
(Selected ports are
enclosed in OPEN SHORT LOAD THRU Isolation
parentheses)
Response OPEN a Not [a] Not Not
() required required required
SHORT Not a [a] Not Not
() required required required
THRU Not Not Not a-b [a-b]
(a-b) required required required
Enhanced Response b b b a-b [a-b]
(a-b)
1-Port (a) a a a Not Not
required required
Full 2-Port (a-b) a, b a, b a, b a-b, b-a [a-b], [b-
al
Full 3-Port (a-b-c) a, b, c a, b, c a, b, c a-b, b-a [a-b], [b-
a-c, c-a aj
b-c, c-b [a-c], [c-
al
[b-c], [c-
b]
Simplified Full 3-
Port
(1-2-3) 1,2,3 1,2,3 1,2,3 1-2, 2-1 [1-2], [2-
1-3, 3-1 1]
[2_3]1 [1-311 [3_
[3-2] 1]
[2-3], [3-
2]

1050

Programming

(1-2-4) 1,2, 4 1,2, 4 1,2, 4 1-2, 2-1 [1-2], [2-
1-4, 4-1 1]
[2_4]1 [1-411 [4_
[4-2] 1]
[2-4], [4-
2]
(1-3-4) 1,3, 4 1,3, 4 1,3, 4 1-3, 3-1 [1-3], [3-
[1-4], 1]
[4-1] [1-4], [4-
3-4,4-3 | 1]
[3-4], [4-
3]
(2-3-4) 2,3, 4 2,3, 4 2,3, 4 2-3, 3-2 [2-3], [3-
[2-4], 2]
[4-2] [2-4], [4-
3-4, 4-3 2]
[3-4], [4-
3]
Full 4-Port 1,2,3, 1,2,3, 1,2,3, 1-2,2-1 | [1-2], [2-
4 4 4 1-3, 3-1 1]
1-4,4-1 | [1-3], [3-
2-3,3-2 | 1]
2-4,4-2 | [1-4], [4-
3-4,4-3 | 1]
[2-3], [3-
2]
[2-4], [4-
2]
[3-4], [4-
3]
Simplified Full 4- 1, 2, 3, 1, 2,3, 1, 2, 3, 1-2, 2-1 [1-2], [2-
Port 4 4 4 1-3,3-1 | 1]
[1_4]/ [1_311 [3_
[4-1] 1]
[2-3], [1-4], [4-
[3-2] 1]
[2_4]1 [2_311 [3_
[4-2] 2]
3-4, 4-3 [2-4], [4-
2]
[3-4], [4-
3]

In the data section in the table, the letter m (for example, 1, a) represents
the measurement data at port m; m-n (for example, 1-2, a-b) represents
the measurement data between response port m and stimulus port n. You
can omit data enclosed in brackets.

1051

E5071C

Calculating Calibration Coefficients

To calculate the calibration coefficients, use one of the following
commands:

Calibration type Command

Response, 1/2/3/4 port :SENS{1-160}:CORR:COLL:SAVE

Simplified full 3/4 port :SENS{1-160}.CORR:COLL:SIMP:SAVE
Simplified 3/4-port TRL

Before issuing the above commands, you must measure all required
calibration data items according to your selected calibration type.
Calculating the calibration coefficients clears all calibration data regardless
of whether they are used for the calculation. The calibration type selection
is also cleared, which results in a state where no calibration type is
selected.

Simplified full 3-/4-port calibration

This function is available with Firmware revision 3.50
or greater. Note that you can execute this function from the
front panel only for Firmware revision A.06.50 or greater.

The simplified full 3-/4-port calibration acquires the calibration coefficients
while omitting a part of the thru measurement.

Notes on the simplified full 3-/4-port calibration

Compared to the normal full 3-/4-port calibration, the simplified full 3-/4-
port calibration is more sensitive to the error that may arise when
acquiring calibration data. This because the calibration coefficients are
calculated without a part of the thru measurement data. Therefore, the
following should be considered when measuring data for the simplified full
3-/4-port calibration.

= The standard used for measurement must match its definition value.
» Use a standard that provides good repeatability (stability).
o Do not omit the length of the thru when defining the standard.

« When using a user-created standard, verify the definition
value.

o For the N connector, remember that it has two different types:
male and female.

= Assure high reliability and repeatability for measurement.

1052

Programming

o Reduce the difference in external environment (such as
temperature difference) between the time when measuring
calibration data and when measuring actual data.

« Set the power level of the stimulus signal sufficiently small so
that compression does not occur.

o Narrow the IF bandwidth.
» Increase the averaging factor.

o Use a cable that has robust amplitude/phase characteristics
against bending.

» Use high-precision connectors.

Simplified 3/4-port TRL calibration

e This function is available with Firmware revision A.06.50 or
greater.

o The simplified 3/4-port TRL calibration calculates the calibration
coefficient by skipping part of the thru/line measurement (or
line/match measurement) that is necessary for normal 3/4-port
TRL calibration.

e You need to give consideration to the same conditions for the
simplified 3/4-port TRL calibration as those for the simplified full
3/4-port calibration listed above.

Turning ON/OFF Error Correction

To turn ON/OFF error correction, use the following command:
:SENS{1-160}:CORR:STAT

Also, once you have calculated the calibration coefficient using the :SENS{1-
160}:CORR:COLL:SAVE or :SENS{1-160}:CORR:COLL:SIMP:SAVE command,
error correction is automatically turned on.

Using ECal

An ECal (Electronic Calibration) module allows you to perform 1-/2-/3-/4-
port calibration and response (THRU) calibration without having to replace
the standard device.

ECal works by using the calibration kit data contained in the ECal module
instead of the calibration kit data selected for the E5071C. This means that
you do not have to define or select a calibration kit when using ECal.

When two or more ECal modules are connected
through the USB port, the system uses the calibration kit data
of the first ECal module.

1053

E5071C

To perform ECal, use one of the following commands:

Calibration type Command

1-Port Calibration :SENS{1-160}:CORR:COLL:ECAL :SOLT1
Full 2-Port Calibration :SENS{1-160}.CORR:COLL:ECAL :SOLT2
Full 3-Port Calibration :SENS{1-160}:CORR:COLL:ECAL :SOLT3
Full 4-Port Calibration :SENS{1-160}:CORR:COLL:ECAL :SOLT4
Enhanced Response Calibration :SENS{1-160}:CORR:COLL:ECAL :ERES

Response Calibration (THRU) :SENS{1-160}:CORR:COLL:ECAL :THRU

Simply issuing one of the above commands completes all of the tasks
necessary for error correction, including measuring the calibration data,
calculating the calibration coefficients, and running the error correction
feature.

Once you have initiated ECal, you cannot cancel the
operation.

No command entered following the initiation of ECal
will be processed until ECal completes successfully. Accordingly,
if you issue a command that queries some data, the system will
not respond to the query until ECal is complete.

The below command was intended to turn ON/OFF the isolation
measurement for performing ECal. However, as the isolation performance
of ENA is better than ECal, this command no longer works. ENA ignores
this command.

:SENS{1-160}:CORR:COLL:ECAL:ISOL

This command takes no action and only exists to
maintain backward compatibility.

To select the ECal characteristic for a user-characterized ECal, use the
following command:

:SENS{1-160}:CORR:COLL:ECAL:UCH

ECal Auto-detect Function

The ECal module can automatically detect which port of the ECal module is
connected to the E5071C test port. Turn off the auto-detect function to
specify a port manually.

To turn OFF the auto-detect function, use the following command.
:SENS:CORR:COLL:ECAL:ORI

1054

Programming

To turn OFF the auto-detect function and set a port manually, use the
following command.

:SENS:CORR:COLL:ECAL:PATH

Checking the Applied Calibration Type

When you turn on error correction, you can check the calibration type
actually applied to each trace. To check the calibration type, use the
following command:

'SENS{1-160}:CORR: TYPE{1-160}?

The above command reads out the same parameter (SOLT3) for both the
full 3-port and simplified full 3-port calibrations, and thus they cannot be
discriminated. For the same reason, the following calibrations cannot be
discriminated: full 4-port and simplified full 4-port, 3-port TRL and
simplified 3-port TRL, and 4-port TRL and simplified 4-port TRL.

Defining Calibration kits

Selecting a Calibration Kit

To select a calibration kit, use the following command:
:SENS{1-160}.CORR:COLL:CKIT

Setting the Calibration Kit Name

To set the name of a calibration kit, use the following command:
:SENS{1-160}.CORR:COLL:CKIT:LAB

Standard Definitions

Selecting a Standard Type

To select a standard type, use the following command:
:SENS{1-160}:CORR:COLL:CKIT:STAN{1-30}: TYPE

Setting the Standard Name

To set the standard name, use the following command:
:SENS{1-160}:CORR:COLL:CKIT:STAN{1-30}.LAB

Setting the Standard Value

To set the standard value, use one of the following commands:

Item Command

Cco :SENS{1-160}:CORR:COLL:CKIT:STAN{1-30} :CO

1055

E5071C

C1 :SENS{1-160}:CORR:COLL:CKIT:STAN{1-30} :C1
c2 'SENS{1-160}:CORR:COLL:CKIT:STAN{1-30} :C2
C3 :SENS{1-160}:CORR:COLL:CKIT:STAN{1-30} :C3

LO 'SENS{1-160}:CORR:COLL:CKIT:STAN{1-30} :LO

L1 :SENS{1-160}:CORR:COLL:CKIT:STAN{1-30} :L1

L2 'SENS{1-160}:CORR:COLL:CKIT:STAN{1-30} :L2

L3 'SENS{1-160}:CORR:COLL:CKIT:STAN{1-30} :L3
Offset Delay :SENS{1-160}:CORR:COLL:CKIT:STAN{1-30} :DEL
Offset Loss :SENS{1-160}:CORR:COLL:CKIT:STAN{1-30} :LOSS
Offset Z0 :SENS{1-160}:CORR:COLL:CKIT:STAN{1-30} :Z0
Arbitrary Impedance | :SENS{1-160}:CORR:COLL:CKIT:STAN{1-30}: ARB
Start Frequency :SENS{1-160}:CORR:COLL:CKIT:STAN{1-30} :FMIN
Stop Frequency :SENS{1-160}:CORR:COLL:CKIT:STAN{1-30}: FMAX
Media Type :SENS{1-160}:CORR:COLL:CKIT:STAN{1-30} :CHAR
Length Type :SENS{1-160}:CORR:COLL:CKIT:STAN{1-30} :.LTYP

As shown in the table below, you need to set different items depending on
the standard type.

C L
(0] (0]
Stand O O Off e Min. Max. Conne
t t set set ry
ard set Frequ Frequ ctor
Types o o Dl Los Z0 ImTEEE enc enc Type
yp ay s ance Yy 3% yp
C L
3 3
T

1056

Programming

LOAD * * * * * *
THRU * * * * * *
Arbitra

ry * * * * * * *
Imped

ance

You need to set the items identified by * marks in the table above.

Saving/Recalling the Definition File

To save the definition of the selected calibration kit to a file, use the
following command.

:‘MMEM:STOR:CKIT{1-20}

To recall the definition of the calibration kit from a file and set, use the
following command.

:MMEM:LOAD:CKIT{1-20}

Defining a Subclass of the Standard

To set the standard type that varies with the frequency range, use the
following command to specify the subclass.

:SENS{1-160}: CORR:COLL:SUBC
To select the subclass, use the following command.
:SENS{1-160}:CORR:COLL:CKIT:ORD

To set the start frequency of a specified subclass, use the following
command.

:SENS{1-160}:CORR:COLL:CKIT:STAN{1-30}:FMIN

To set the stop frequency of a specified subclass, use the following
command.

:SENS{1-160}:CORR:COLL:CKIT:STAN{1-30}:FMAX

Defining a Standard Class Assignment

To select the standard to be applied to the OPEN measurement for each
port, use the following command:

:SENS{1-160}:CORR:COLL:CKIT:ORD:OPEN

To select the standard to be applied to the SHORT measurement for each
port, use the following command:

1057

E5071C

:SENS{1-160}:CORR:COLL:CKIT:ORD:SHOR

To select the standard to be applied to the LOAD measurement for each
port, use the following command:

:SENS{1-160}:CORR:COLL:CKIT:ORD:LOAD

To select the standard to be applied to the THRU measurement between
each pair of ports, use the following command:

:SENS{1-160}:CORR:COLL:CKIT:ORD:THRU

To select the standard to be applied to the THRU measurement for the TRL
calibration between each pair of ports, use the following command.

:SENS{1-160}:CORR:COLL:CKIT:ORD:TRLT

To select the standard to be applied to the Reflection measurement for the
TRL calibration between each pair of ports, use the following command.

:SENS{1-160}:CORR:COLL:CKIT:ORD:TRLR

To select the standard to be applied to the Line/Match measurement for
the TRL calibration between each pair of ports, use the following command.

:SENS{1-160}:CORR:COLL:CKIT:ORD:TRLL

Setting the Standard Media Type

To select the media type of the standard to be used, use the following
command.

:SENS{1-160}:CORR:COLL:CKIT:STAN{1-30}:CHAR

Saving and loading calibration coefficients

You can save calibration coefficients to a file along with other instrument
settings and then later load them from the file.

By default, the system does not save calibration coefficients when it saves
instrument settings. Therefore, to save calibration coefficients, you must
explicitly configure the system to save them by issuing the following
command:

:MMEM:STOR:STYP

To save calibration coefficients to a file, use the following command:
‘MMEM:STOR

To load calibration coefficients from a file, use the following command:
:MMEM:LOAD

For more information on how to save and load calibration coefficients, refer
to Saving and recalling instrument status
Reading/Writing Calibration Coefficient Alone

1058

The calibration coefficient alone can be read from and written to the
E5071C by using the following command:

:SENS{1-160}:CORR:COEF

To write a positive calibration coefficient, use one of the following
commands to declare the calibration type:

:SENS{1-160}:CORR:COEF:METH:ERES
:SENS{1-160}:CORR:COEF:METH:OPEN
:SENS{1-160}:CORR:COEF:METH:SHOR
:SENS{1-160}:CORR:COEF:METH:SOLT1
:SENS{1-160}:CORR:COEF:METH:SOLT2
:SENS{1-160}:CORR:COEF:METH:SOLT3
:SENS{1-160}:CORR:COEF:METH:SOLT4
:SENS{1-160}:CORR:COEF:METH:THRU

Programming

To validate the written calibration coefficient, use the following command:

:SENS{1-160}:CORR:COEF:SAVE

About Calibration Types and Coefficients

The following table shows the required calibration coefficients for each

calibration type.

Calibration Type

Calibration Coefficient

ES

ER

ED

EL

ET

EX

Response calibration (OPEN)

k3

*

Response calibration (SHORT)

Response calibration (THRU)

Enhanced response calibration

1-port calibration

Full 2-port calibration

Full 3-port calibration

Full 4-port calibration

2-Port TRL calibration

3-Port TRL calibration

1059

E5071C

4-Port TRL calibration ‘ * ‘ * ‘ * ‘ * ‘ * ‘ ‘

If either an invalid calibration coefficient is specified
for the writing command or a nonexistent calibration coefficient
is specified for its reading command, the following error will
occur: 23, Specified error term does not exist

Procedures for Writing Calibration Coefficient

You must follow the steps below to write the calibration coefficient.
1. Declare the calibration type to write.

Execute :SENS{1-160}:CORR:COEF:METH:xxxx command
2. Write any calibration coefficient.

Execute :SENS{1-160}:CORR:COEF command as needed for the written
calibration coefficients

3. Validate the calibration coefficients.
Execute :SENS{1-160}:CORR:COEF:SAVE command
Do not execute any other command while writing the

calibration coefficients.This may cause the system to function
incorrectly.

If the fixture simulator is turned on, the calibration
coefficient writing will not function correctly. Make sure to turn
off the fixture simulator before execution.

Clearing Calibration Data and Calibration Coefficients

Clearing Calibration Data

When the frequency offset function has been disabled

You can use the following command to clear the measurement values of
calibration data executed with :SENS{1-160}:CORR:COLL:OPEN
command, etc.

:SENS{1-160}:CORR:COLL:CLE
When the frequency offset function has been enabled

You can use the following command to clear the measurement values of
calibration data executed with :SENS{1-160}:CORR:OFFS:COLL:OPEN
command, etc.

:SENS{1-160}.CORR:OFFS:COLL:CLE

These clear functions make the temporarily settings during the calibration,
such as trace number and measurement parameters, recover to the
original state.

1060

Programming

Clearing Calibration Coefficients

When the frequency offset function has been disabled

You can use the following command to clear the calibration coefficients
used.

:SENS{1-160}:CORR:CLE
When the frequency offset function has been enabled

You can use the following command to clear the calibration coefficients
used.

:SENS{1-160}.CORR:OFFS:CLE

This command does not clear calibration coefficients related to normal
calibration.

1061

E5071C

Power Calibration
e Overview
e Preparation for Power Calibration

e Loss Compensation
e Turning ON/OFF Power-level Error Correction

Other topics about Performing Calibration

Overview

The E5071C lets you perform power calibration by using a power meter to
output a more accurate power level.

Preparation for Power Calibration

Connecting Power Meter and Power Sensor

The E5071C performs power calibration by controlling the power meter via
GPIB. Therefore, you need to connect the E5071C and the power meter by
using the USB/GPIB interface.

Selecting the Power Meter

Use the following command to select the type of GPIB or USB enabled
power meter:

:SYST:COMM:PSENSsor

Setting GPIB Address of Power Meter

Use the following command to set the GPIB address of the power meter to
the E5071C.

:SYST:COMM:GPIB:PMET:ADDR

Setting Power Sensor Calibration Factor Table

Before performing power calibration, set the reference calibration factor
(the calibration factor at 50 MHz) and the calibration factor for each
frequency depending on the power sensor you use.

Depending on the combination of power meter and
power sensor that you use, the power sensor calibration factor
table may be set automatically by the power meter. In this
case, do not set the calibration factor table with the E5071C.

To set the reference calibration factor of the power sensor, use the
following commands:

1062

Programming

Channel A :SOUR:POW:PORT:CORR:COLL:ASEN:RCF

Channel B :SOUR:POW:PORT:CORR:COLL:BSEN:RCF

To set the calibration factor table of the power sensor for each frequency,
use the following commands:

Channel A :SOUR:POW:PORT:CORR:COLL:TABL:ASEN:DATA

Channel B :SOUR:POW:PORT:CORR:COLL:TABL:BSEN:DATA

Alternatively, you can configure the power sensor calibration factor table
based on the data contained in a CSV file by issuing the following
commands:

Channel A :MMEM:LOAD:ASCF

Channel B ‘MMEM:LOAD:BSCF

Also, you can save the contents of the current power sensor calibration
factor table to a file by issuing the following commands:

Channel A :MMEM:STOR:ASCF

Channel B ‘MMEM:STOR:BSCF

For more information on saving/recalling the power sensor calibration
factor table, refer to Saving/recalling Power Sensor Calibration Factor
Table.

Loss Compensation

You can perform loss compensation by setting in advance the power loss
due to the difference in connections (cables, adapters, etc.) between the
when the power calibration data are measured and when the actual DUTs
are measured.

Setting Loss Compensation Table

To set the loss compensation table for each frequency, use the following
command:

:SOUR({1-36}:POW:PORT{1-4}:CORR:COLL:TABL:LOSS:DATA

1063

E5071C

Alternatively, you can configure the loss compensation table based on the
data contained in a CSV file by issuing the following command:

:MMEM:LOAD:PLOS{1-4}

Also, you can save the contents of the current loss compensation table to a
file by issuing the following command:

‘"MMEM:STOR:PLOS{1-4}

Turning ON/OFF Loss Compensation

To turn on or off the loss compensation, use the following command:
:SOUR({1-36}:POW:PORT{1-4}:CORR:COLL:TABL:LOSS

Measuring power calibration data

Before measuring power calibration data, you need
to execute zero adjustment and calibration of the power sensor.
For information on how to perform these procedures, refer to
the operation manual of the power meter you are using.

When using the power sensor calibration factor table
of the E5071C, set the reference calibration factor of the power
meter to 100% when calibrating the power sensor.

To set the number of power calibration data measurements at one
measurement point (averaging factor), use the following command:

:SOUR{1-36}:POW:PORT{1-4}:CORR:COLL:AVER
To set a tolerance for power calibration, use the following command:
:SOUR{1-36}:POW:PORT{1-4}:CORR:COLL:NTOL

When a tolerance for power calibration is set, if the
measured value does not fall within the tolerance, even after
measurement is performed during power calibration the number
of times specified by the averaging factor, an error message is
displayed and the power calibration is aborted. In this case, the
power correction is not turned on.

To measure the power calibration data, use the following command. When
the measurement is complete, the power calibration is automatically
turned on.

:SOUR{1-36}:POW:PORT{1-4}:CORR:COLL
If you issue another command during the
measurement of the power calibration data by the above
command, the measurement may be aborted. Therefore, when

you write a program that issues multiple calibration commands
in series, you should use the *OPC or some other means to

1064

Programming

ensure that no command is executed before the preceding
command completes itself.

Turning ON/OFF Power-level Error Correction

To turn on or off the power-level error correction, use the following
command:

:SOUR{1-36}:POW:PORT{1-4}:CORR

When the power calibration data measurement initiated with the :SOUR{1-
36}:POW:PORT{1-4}:CORR:COLL command is complete, the power calibration
is automatically turned on.

Reading/writing power calibration data array

The power calibration data array contains data used to perform error
correction for the power level at each measurement point (values obtained
by subtracting the value actually measured with the power meter from the
set power level value when measuring power calibration data at each
measurement point).

The number of power calibration data arrays that are assigned to individual
ports of individual channels can be up to 64 (16x4). To read/write one of
the power calibration data arrays, use the following command:

:SOUR{1-36}:POW:PORT{1-4}:CORR:DATA

1065

E5071C

Receiver Calibration
e Overview

e Measurement of Receiver Calibration Data & Calculation of
Calibration Coefficient

e Turning ON/OFF Receiver Error Correction

Other topics about Performing Calibration

Overview
The E5071C has a receiver calibration capability to calibrate the gain for
each receiver in an absolute measurement.

Measurement of Receiver Calibration Data & Calculation of Calibration Coefficient

Before starting a measurement of receiver calibration
data, you must connect a THRU between the source port at
which power calibration was applied and the receiver port on
which you want to implement receiver calibration.

Use the following command for the measurement of receiver calibration
data and calculation of calibration coefficient. The value following REC
signifies a receiver port number, and the value given as an argument is a
source port number. Specifying the same port to both the receiver port
and source port will cause an error.

:SENS{1-160}.CORR:REC{1-4}.COLL:ACQ
From Firmware rev 9.2, you can calibrate the

receiver and transmitter port independently.
Use the following command to calibrate the receiver port:
:SENS{1-160}: CORR:REC{1-4}.COLL:RCH:ACQ
Use the following command to calibrate the transmitter port:
:SENS{1-160}:CORR:REC{1-4}.COLL:TCH:ACQ
Once the measurement is completed, calculation of the calibration

coefficient takes place automatically, turning on receiver error correction
automatically.

The power calibration information on both the
receiver port and source port is used to calculate calibration
coefficients. The accuracy of receiver calibration will increase if
power calibration is implemented for both the receiver port and
the source port before starting receiver calibration. For
information on power calibration, refer to Power Calibration.

Verify the frequency of each port before starting a
frequency offset sweep. Since this command does not change

1066

Programming

the frequency setting, you cannot expect a correct
measurement result unless the frequency is the same for both
the receiver port and the source port.

When using power calibration in combination with
receiver calibration, you must implement it so that it sufficiently
covers the frequencies of both ports or implement it twice,
before and after the receiver calibration.

Turning ON/OFF Receiver Error Correction
To turn on or off the receiver error correction, use the following command:
:SENS{1-36}:CORR:REC{1-4}

Once the measurement of receiver calibration data is
completed with the :SENS{1-36}:CORR:REC{1-4}:COLL:ACQ
command, receiver error correction is automatically turned on.

1067

E5071C

Scalar-Mixer Calibration
e Overview
e Measurement of Scalar-Mixer Calibration Data

Other topics about Performing Calibration

Overview

The E5071C's frequency offset function allows you to measure any device
that has different input and output frequencies. To correct such
measurements, you must determine the transmission frequency
characteristics at different frequencies.

Scalar-mixer calibration is a method to calculate the transmission
frequency characteristics at different frequencies by using a power meter.

Measurement of Scalar-Mixer Calibration Data

Setting Frequency Offset Function

You can use the following command to enable the frequency offset function
before starting a measurement of scalar-mixer calibration data.

:SENS{1-36}:0FFS
To use scalar-mixer calibration, the frequency offset
function must be enabled.

Selecting Calibration Port and Type

You can use the following commands to set the port on which a
measurement of scalar-mixer calibration data is implemented and the type
of calibration.

e :SENS{1-36}:CORR:OFFS:COLL:METH:SMIX2
o :SENS{1-36}:CORR:OFFS:COLL:METH:SOLT1

"SMIX2" will set a scalar-mixer calibration for 2-port forward, reverse and
both directions. "SOLT1" will set 1-port calibration.

The two ports specified by "SMIX2" must be different
from each other.

The setting of forward, reverse and both directions is not dependent on the
order of the two specified ports but determined by specifying an
appropriate command for calibration data measurement, such as

:SENS{1-36}:CORR:OFFS:COLL:OPEN

Measuring the Calibration Data

1068

Programming

You can use the following command to measure the scalar-mixer
calibration data.

« :SENS{1-36}:CORR:OFFS:COLL:OPEN
« :SENS{1-36}:CORR:OFFS:COLL:SHOR
« :SENS{1-36}:CORR:OFFS:COLL:LOAD
« :SENS{1-36}:CORR:OFFS:COLL:THRU

Measuring Power

You can use the following command to measure power.
:SENS{1-36}.CORR:OFFS:COLL:PMET

Power measurement is required for scalar-mixer
calibration, but it is not required for 1-port calibration. The
setting for power measurement is the same as for the normal
power calibration. For information on power calibration, refer to
Power Calibration.

Calculation of scalar-mixer calibration coefficient

If the needed measurement is completed for the calibration port and type
you have selected, use the following command to start calculation of
calibration coefficients.

:SENS{1-36}.CORR:OFFS:COLL:SAVE

If the necessary measurement is not completed, an
error will occur. Once the calculation of calibration coefficients is
completed, the measurement values are cleared despite
whether they were used and error correction is turned on
automatically.

Turning ON/OFF scalar-mixer error correction

To turn on or off scalar-mixer error correction, use the following command.
This command is commonly used for the normal calibration; scalar-mixer
calibration data are enabled while the frequency offset is turned on, and
the normal calibration data are enabled while it is turned off.

'SENS{1-36}:CORR:STAT

Once the scalar-mixer calibration coefficient has
been calculated, scalar-mixer correction is automatically turned
on.

Implementing scalar-mixer calibration with ECal

1069

E5071C

An ECal (Electronic Calibration) module allows you to perform scalar-mixer
calibration and 1-port calibration without needing to replace the standard
device.

To perform ECal, use one of the following commands:

Calibration type Command

1-Port Calibration :SENS{1-363}:CORR:OFFS:COLL:ECAL:SOLT1

Scalar-Mixer Calibration :SENS{1-363}:CORR:OFFS:COLL:ECAL:SMIX2

Simply issuing one of the above commands completes some of the tasks
necessary for error correction, including measuring the calibration data,
calculating the calibration coefficients, and running the error correction
feature. To implement scalar-mixer calibration, you must measure the
power in advance. For 1-port calibration, you do not need to do this.

Once ECal has started, you cannot interrupt the
operation.

Any command received after ECal has started will
not be executed until ECal is completed. In other words, even if
you issue a command with a Query, you cannot get the Query
response until ECal is finished.

1070

Programming

Partial Overwrite
e Overview

» Executing_calculation_of_calibration_coefficients_using_partial_over
write

Other topics about Performing Calibration

Overview

The E5071C has the following calibration coefficients for full N-port
calibration: Er, Es, Ed (reflection), Et (transmission), and Ex (isolation).The
partial overwrite function is used to measure some of these calibration
coefficients after completion of the initial calibration and then to overwrite
them.

The conditions under which the calibration coefficients can be calculated by
the partial overwrite are as follows:

» Calibration is completed once and valid (status other than C? or C!)
« One or more measurements for re-calculation are performed.

e The isolation calibration coefficient, Ex, cannot be returned to
the initial value, 0, once it is calculated.

If calculation of the calibration coefficients is attempted without the
measurements required to execute the partial overwrite, an error message
(20: Additional Standard Needed) is displayed.

Executing calculation of calibration coefficients using partial overwrite

To calculate the calibration coefficients using partial overwrite, use the
following command:

'SENS{1-36}:CORR:COLL:PART:SAVE

Before you can calculate the calibration coefficients
with the partial overwrite, you must select the appropriate
calibration type in the same way used for normal calibration. If
calculation of the calibration coefficients is attempted without
selecting the calibration type, an error message (28: Invalid
Calibration Method) is displayed.

1071

E5071C

Making Measurement
Making Measurement

e Trigger System

o Starting a Measurement Cycle (triggering the instrument)
o Waiting for the End of Measurement

« Point Trigger Function

e Averaging Trigger Function

1072

Programming

Trigger System
e Overview
e System-Wide States and Transitions

e Channel-wide States and Transitions

Other topics about Making Measurement

Overview

The trigger system is responsible for such tasks as detecting the start of a
measurement cycle (triggering) and enabling/disabling measurement on
each channel. As shown the following figure, the trigger system has two
types of states: system-wide and channel-wide. The system-wide state can
be "Hold", "Waiting for Trigger", or "Measurement"”, while the channel-wide
state can be "Idle" or "Initiate".

Trigger system

1073

E5071C

Systanrwide Stale amd Transition

| BBOR waoded
& gt
Hold i
Fonoy Lared o
Q05,00 e s)
a 1 Err:lﬁﬂﬂﬂi!

s
Iz
g!_]gﬂmgm%” . TESE |5 T

] ‘& e Coentin Iitimien meds o ol
TR mrsauied ralthe charmels

[, |
TrRGErG B

w%}énggei;m Trigged defested | Measurement

Channel-wide Stale and Transition

 hoywned 4 hanne I Channe] 15
Idle Idle ldie
T f Q =TI 5 WY g
Al g or a3 el g
M CONTON | | Padodbisas, FINZEOEINEH | | £od oflbess Bl PR EE L Bl of Wisars:
IFIH'i'l N& —— “mqtﬂﬁg. Hﬂﬂfﬂﬁ'i‘%
Initiate Initiatel Initiate

= & - Caomiimaou g Inbiltion anode = OR
B4 Coenlraoeans b ifsadnon rosde 2 OFF

eB0F1a312

The following subsections describe each state and explains how the trigger
system switches among the states.

System-Wide States and Transitions

""Hold™ State

The trigger system switches to "Hold" state when one of the following
commands has been executed (arrow "e" in the above figure). Also,
turning on the power to the instrument puts the trigger system into "Hold"
state. When the power is turned on, however, continuous initiation mode is
on for channel 1 and the trigger source is set to "Internal”; accordingly,
the trigger system immediately switches to "Waiting for Trigger" state and
subsequently repeats transitions between "Measurement" and "Waiting for
Trigger" states.

1074

Programming

e :ABOR

e *RST
When the trigger system is in "Hold" state and one of the channels
switches to "Initiate" state (arrow "f" in the above figure), the trigger

system switches to "Waiting for Trigger" state (arrow "a" in the above
figure).

""Waiting for Trigger'* State

When the trigger system is in "Waiting for Trigger" state and either the
instrument is triggered (i.e., a trigger is detected) or one of the following
commands is executed, the trigger system switches to "Measurement"
state (arrow "b" in the above figure)

¢ TRIG
e TRIG:SING

As shown in the table below, the instrument is triggered differently
depending on which trigger source is specified. To specify the trigger
source, use the :TRIG:SOUR command.

Trigger How instrument is triggered

Source

In_ternal The instrument is automatically triggered within itself.

trigger

External The instrument is triggered when a trigger signal is input through
trigger the Ext Trig terminal or the handler interface

Bus trigger The instrument is triggered when the *TRG command is issued.
Manual The instrument is triggered when you press Trigger > Trigger on
trigger the front panel.

""Measurement' State

In "Measurement" state, the instrument waits for the elapse of the sweep
delay time (set by the :SENS{1-36}:SWE:DEL) and then starts a
measurement cycle; this process is performed sequentially on each of
those channels that were in "Initiate" state immediately before the
transition to this state, in ascending order of channel number.

When the instrument has finished measuring all of the active channels, the
trigger system behaves in one of the following ways depending on the
setting of the continuous initiation mode.

If continuous initiation mode is off for all channels:

1075

E5071C

The trigger system switches to "Hold" state (arrow "c" in the above figure).
If continuous initiation mode is on for one of the channels:

The trigger system switches to "Waiting for Trigger" state (arrow "d" in the
above figure).

Channel-wide States and Transitions

"ldle™ State

A channel switches to "Initiate" state when one of the following commands
has been executed (arrow "f" in the above figure).

« :INIT{1-36}
e INIT{1-36}:CONT("ON" specified)

"Initiate" State

A channel in this state is measured just before the entire system switches
to "Measurement" state.

When the instrument has finished measuring a channel, the channel

behaves in one of the following ways depending on the setting of the
continuous initiation mode (set by the :INIT{1-36}:CONT).

If continuous initiation mode is off:

The channel switches to "Idle" state (arrow "g" in the above figure).

If continuous initiation mode is on:

The channel remains in "Initiate" state (arrow "h" in the above figure).

1076

Programming

Starting a Measurement Cycle (Triggering the Instrument)

Configuring the Instrument

Starting Measurement on Demand

Other topics about Making Measurement

Configuring the Instrument to Automatically Perform Continuous Measurement

1.

Use the :INIT{1-36}:CONT command to turn on continuous initiation
mode for the channels you want to measure and turn the mode off
for any other channel.

Issue the :TRIG:SOUR command to set the trigger source to Internal
trigger.

Starting Measurement on Demand

1.

Use the :INIT{1-36}:CONT command to turn on continuous initiation
mode for the channels you want to measure and turn the mode off
for any other channel.

Issue the :TRIG:SOUR command to set the trigger source to "Bus
Trigger".

. Trigger the instrument whenever you want to perform measurement.

An external controller can trigger the instrument by using one of the
following three commands:

Command Can *OPC? command be Applicable
used to wait for end of trigger source
sweep?

*TRG No Bus trigger only

TRIG External trigger

Bus trigger
- TRIG:SING Yes Manual trigger

. Repeat step 3 to start the next measurement cycle.

1077

E5071C

Waiting for the End of Measurement
o Using the Status Register
e Using :TRIG:SING Command
e Using Wait Time

Other topics about Making Measurement

Using the Status Register

The status of the E5071C can be detected through the status registers.
This section explains how to detect the end of measurement by using the
status registers.

Measurement status is reported by the operation status condition register.
An SRQ (service request) is useful when creating a program that uses the
information reported by this register to detect the end of measurement.

To detect the end of measurement via an SRQ, use one of the following
commands:

e« *SRE
e STAT.:OPER:ENAB
e STAT.OPER:PTR
e STAT.:OPER:NTR
Follow these steps to utilize an SRQ:

1. Configure the E5071C so that it generates an SRQ when the
operation status condition register's bit 4 (a bit that is set to 1 during
measurement) is changed from 1 to 0.

2. Trigger the instrument to start a measurement cycle.

3. When an SRQ is generated, the program interrupts the measurement
cycle.

SRQ generation sequence (at end of measurement)

1078

Programming

> SR
L

|
1] lofofloo|o]o|srees
fr %5 T2 T2 T ¥ Fo 7e

st Ryde Regshes

Cpeiation Tisis itk Jegister
[oJolafofo]

faz Fa Tz Tee To fu o fﬁ f= f= ts

o [o[oo |emrorssnssts

ts % . % .
|

S T : T S g _ -
aa"%%?%a T X i R A (AR Ty
LR, .

A U3 LRl a
= nnhn g s a Iﬁ-r."-r.-ﬁ --Euz-ﬁ-- ----E-- --E-- - -q—

e TR OPeR IR 16
T pai 1

L b2

o e

Sample Program

See the Waiting for Trigger (SRQ).

Using :TRIG:SING Command

When you trigger the instrument by issuing the :TRIG:SING command, you
can use the *OPC command to wait until the measurement cycle is
completed.

Sample Program

See the Waiting for Trigger (OPC?).

Using Wait Time

Before creating your program, actually measure the time between the start
and end of the measurement cycle. Then code your program so that the
controller waits for the actually measured time by using the appropriate
command (for example, the WAIT command for HTBasic). This is a
straightforward method, but care must be taken: an incorrect wait time
could result in an unexpected error.

1079

E5071C

Point Trigger Function

e Point Trigger

e Switching Mode

Other topics about Making Measurement

Point Trigger

Point trigger is a method used to measure a single point each time the
instrument is triggered. You can perform this type of measurement by
turning ON/OFF the point trigger function.

Switching Mode

You can use the following command to toggle between the point trigger's
ON/OFF status.

'TRIG:POIN

If the trigger source is internal, the point trigger
function does not work even if it is specified to ON.

Low-latency external trigger

When the trigger source is an external trigger and the point trigger
function is on, the low-latency external trigger function is available. The
low-latency external trigger function is used to set the external trigger
delay time each time a trigger for a measurement point is given.

The setting of the low-latency external trigger function is valid for all
channels.

Setting the low-latency external trigger

To toggle ON/OFF the low-latency external trigger function, use the
following command:

‘TRIG:EXT:LLAT

If the trigger source is not an external trigger, the low-latency external
trigger function does not work even if it is specified to ON, nor does it work
when the point trigger function is off.

To set the external trigger delay time, use the following command:
‘TRIG:EXT:DEL

1080

Programming

Averaging Trigger Function

« Averaging Trigger

e Toggling Mode

Other topics about Making Measurement

Averaging Trigger

The averaging trigger function is used to execute the number of sweeps
specified as the averaging factor with a single trigger when the sweep
averaging function is used. When a trigger is given, the sweep count is
cleared, the sweep is executed the number of times specified by the
averaging count, and then the instrument goes into Hold status.

The setting of the averaging trigger function is valid for all channels. Note
that you can set the sweep averaging function for each channel.
Toggling Mode

To toggle ON/OFF the averaging trigger function, use the following
command:

‘TRIG:AVER

When the point trigger function is on, its setting has
priority and the setting of the averaging trigger is ignored. More
specifically, the required number of triggers is: nhumber of
measurement points in a single sweep x averaging factor.

When the averaging function is off for the active
channel, the averaging trigger function does not work for the
channel. When a trigger is given, the sweep is executed only
once, and then the instrument goes into Hold status.

OPC? command can be used to detect end of
measurement. o learn more, see SCPI.IEEE4882.0PC and
Waiting for Trigger (OPC?).

1081

E5071C

Reading-Writing Measurement Data
Reading-Writing Measurement Data

o Data Transfer Format

« Internal Data Processing

o Retrieving Measurement Results
« Entering Data into a Trace

1082

Data Transfer Format

Overview
ASCII Transfer Format

Integer Format

Floating-Point Number Format

Binary Transfer Format

Programming

Other topics about Reading-Writing Measurement Data

Overview

When you transfer data using the one of the following commands, you can
choose among ASCII transfer format, IEEE 64-bit floating point binary
transfer format and IEEE 32-bit floating point binary transfer format.

The instrument always uses the ASCII transfer
format when you transfer data without using any of the

following commands:
:CALC{1-160}:BLIM:REP?
:CALC{1-160}:DATA:FDAT
:CALC{1-160}:DATA:FMEM
:CALC{1-160}:DATA:SDAT
:CALC{1-160}:DATA:SMEM
:CALC{1-160}:FUNC:DATA?
:CALC{1-160}:LIM:DATA
:CALC{1-160}:LIM:REP?
:CALC{1-160}.LIM:REP:ALL?
:CALC{1-160}:RLIM:DATA
:CALC{1-160}:RLIM:REP?
'SENS{1-160}: CORR:COEF?
:SENS{1-160}.FREQ:DATA?
:SENS{1-160}.:SEGM:DATA

:SOUR:POW:PORT:CORR:COLL:TABL:ASEN:DATA
:SOUR:POW:PORT:CORR:COLL:TABL:BSEN:DATA

:SOUR{1-160}:POW:PORT{1-4}:CORR:COLL:TABL:LOSS

:SOUR{1-160}:POW:PORT{1-4}: CORR:DATA
To set the data transfer format, use the following command:

:FORM:DATA

1083

E5071C

Executing the :SYST:PRES or *RST does not affect
the current setting of the data transfer format.
ASCII Transfer Format

When you select the ASCII transfer format as the data transfer format,
numbers are transferred as ASCII bytes, each of which corresponds to one
of the formats shown below. Note that numbers are separated from one
another with a comma (,) in accordance with the IEEE 488.2 specification.

Numeric data strings vary in length. Keep this in
mind when you extract some data from retrieved numeric data
strings in your program.

Integer Format
The figure below shows this format. Numbers are expressed as integers.
For example, 201 is expressed as "+201" or "201."

L)
<digit> _1..

Integer format

e a3

Floating-Point Number Format

The figure below shows this format. Numbers are expressed with floating
points. For example, 1000 is expressed as "+1.00000000000E+003."

Floating-point number format

1084

Programming

=t
<digit> l

SA0T1c362

Binary Transfer Format

You can select the binary transfer format from the IEEE 64-bit floating
point format or the IEEE 32-bit floating point format depending on the
controller you use.

IEEE 64-bit floating point format

When you select the IEEE 64-bit floating point binary transfer format as
the data transfer format, numbers are transferred in the format shown in
the figure below.

Binary transfer format

]
—n@-w B = <Number of byte:?L Binary data -1- =newling=<"END >t

byle 8 byte
~»'.""'———'--..,\“f-v-'———""""{"L"''‘—‘—--l-..(l‘-——""’)
Flle Heades Dita

eS0T 10480

This data transfer format uses a header that consists of a sharp character
(#), a number of 6 (which indicates the byte size of the <number of bytes
transferred> part), and the <number of bytes transferred> part in this
order. The header is followed by the binary data (each nhumber consists of
8 bytes and the total is the byte size indicated by <number of bytes
transferred>) and the message terminator <new line>”~END.

The binary data is expressed in the IEEE 754 64-bit floating-point number
format shown in the figure below.

64-bit floating point format

1085

E5071C

:5?1 Fart Fraction Fart
1 Blth {52 blish
IJ'I 1

1 1
O T T O T DO T AT T O

Expronrant Parl
{11 bits}

T
&4 bits
e80T 19482

IEEE 32-bit floating point format

When you select the IEEE 32-bit floating point binary transfer format as
the data transfer format, numbers are transferred in the format shown in
the figure below.

IEEE 32-bit floating point binary transfer format

-
—n-@—-— 6 - {n%JQI'?Sﬁ‘rEPFLBEEE [=~ Binary Data -l-{ﬂnmvlincr*:*'lENDr)—'-

6 byte 4 byte
W
File Header Data

aL L [s

This data transfer format uses a header that consists of a sharp character
(#), a number of 6 (which indicates the byte size of the <number of bytes
transferred> part), and the <number of bytes transferred> part in this
order. The header is followed by the binary data (each number consists of
4 bytes and the total is the byte size indicated by <number of bytes
transferred>) and the message terminator <new line>”~END.

The binary data is expressed in the IEEE 754 32-bit floating-point number
format shown in the figure below.

32-bit floating point data

1086

Programming

Code Fraction
{1 bif} {23 bils)
Exponent
tg bits)
|
|
32 blis
e80T 10440

Byte order

When you opt to perform binary transfer, you can configure the instrument
to transfer the bytes of the data in one of the following two byte orders:

NORMal

Transfer begins with the byte that contains the MSB (Most Significant Bit);
that is, the leftmost byte in 64 bit floating point format and 32 bit floating
point data.

SWAPped

Transfer begins with the byte that contains the LSB (Least Significant Bit);
that is, the rightmost byte in 64 bit floating point format and 32 bit floating
point data.

To set the byte order, use the following command:
:FORM:BORD

Executing the :SYST:PRES or *RST does not affect
the current setting of the byte order.

1087

E5071C

Internal Data Processing
o Data Flow
o Internal Data Arrays

Other topics about Reading-Writing Measurement Data

Data Flow

The following figure provides an overview of the E5071C's internal data
processing flow.

E5071C's data processing flow

CALC{160} DATA:SDAT CALC{160}. DATAFDAT
CP.LC{‘IBCI} DATASDAT? l C?LG{HU}.D&T.'\ FOAT?

O
pnas Avera in Raw Em. Comp. PM Ext Cal. Dala Data Mt Formatted
Block "L ging Cahbramn Slmulato Aray > lah—» Dot ATy Voais

JCALC{160 MATHMEM | Format
'SENS{160).DATA RAWD?

Cal Cnef Cal. Mem.___,. ; [V
Data Array Amay Smoohing lem. Array e
¥ ¥
‘SENS{160yCORR-.COEF? |.CALC{180}DATA SMEM? CALC{160} DATA FMEM?
SENS{160}CORR.COEF :CALC{150}DATA'SMEM ‘CALC{160) DATA.FMEM
‘SENS{160}FREQ DATA?
Legend: Stimulus
| |Data Array| | Data Data Aray
Processing) | Read- | | Readabl
only Witable

(*1):CALC{1-160}:DATA:CORR? allows you to get the other S-parameter than the selected.
e5071c614

Internal Data Arrays

Raw data arrays

Raw data array contains uncorrected data. The data is obtained by
performing IF range correction, ratio calculation, port characteristics
correction and sweep averaging. This data will be used in error correction.

To read one of the raw data arrays, use the following command:
:SENS{1-160}.DATA:RAWD

Calibration Coefficient Data Arrays

A calibration coefficient data array contains the calibration coefficients
calculated based on the results of measurement performed with standard
devices.

Commands are available for reading or writing calibration coefficient data
arrays. To read or write, first use the following command:

1088

Programming

:SENS{1-160}:CORR:COEF

If any calibration coefficient is interpolated, the
interpolated calibration coefficient data array will be retrieved.
Once a calibration coefficient data array has been written,
execute the command SENS{1-160}:CORR:COEF:SAVE to validate
it

Corrected data arrays

A corrected data array contains the corrected data obtained by performing
error correction, port extension compensation (calibration), Fixture
Simulator operations on the raw measured data of S-Parameter specified
for each trace of each channel. Each data element is stored as a complex
number (Re/Im).

To read/write one of the corrected data arrays, use the following
command:

:CALC{1-160}:.DATA:SDAT
Corrected data arrays (S-Parameter)
You can get the S-Parameter measurement result which the analyzer has.

For example, when you measure 2 full ports calibration, the analyzer
measures not only the S-Parameter you selected but also four S-
Parameters at the measurement. In this case, you can get the other S-
Parameter.

To read one of the corrected S-Parameter data arrays, use the following
command:

:SENS{1-160}:DATA:CORR

Corrected memory arrays

When the :CALC{1-160}:MATH:MEM command is executed on a particular
corrected data array, its copy is stored into the corrected memory array
corresponding to that corrected data array.

To read/write one of the corrected data arrays, use the following
command:

:CALC{1-160}:DATA:SMEM

Formatted data array

A formatted data array contains the formatted data (values to be
displayed) obtained by performing data math operations, measurement
parameter conversion, and smoothing on a particular corrected data array.

1089

E5071C

Regardless of the data format, it contains two data elements per
measurement point as shown in the following table:

Data format

Data element
(primary value)

Data element (secondary
value)

log magnitude log magnitude Always 0
Phase Phase Always 0
Group delay Group delay Always 0
Smith chart (Lin) Liner magnitude Phase
Smith chart (Log) log magnitude Phase

Smith chart Real part of a complex Imaginary part of a complex
(Re/Im) number number

Smith chart Resistance Reactance

(R+jX)

Smith chart Conductance Susceptance

(G+jB)

Polar (Lin) Liner magnitude Phase

Polar (Log) log magnitude Phase

Polar (Re/Im)

Real part of a complex
number

Imaginary part of a complex
number

Liner magnitude Liner magnitude Always 0

SWR SWR Always 0

Real number Real part of a complex Always 0
number

Imaginary Imaginary part of a complex Always 0

number number

Expanded phase Expanded phase Always 0

To read/write one of the formatted data arrays, use the following

command:

:CALC{1-160}:DATA:FDAT

Formatted memory arrays

1090

Programming

A formatted memory array contains the formatted data (values to be
displayed) obtained by performing data math operations, measurement
parameter conversion, and smoothing on a particular corrected memory
array.

To read/write one of the formatted memory arrays, use the following
command:

:CALC{1-160}.DATA:FMEM

Stimulus data arrays

A stimulus data array contains the stimulus values for all measurement
points.

The instrument retains 160 stimulus data arrays at maximum, each of
which is associated with one of the 160 channels. Stimulus data arrays are
read-only. To retrieve one of the stimulus data arrays, use the following
command:

:SENS{1-160}:FREQ:DATA?

1091

E5071C

Retrieving Measurement Results
e Overview
o Retrieving Internal Data Arrays

« Sample Program

Other topics about Reading-Writing Measurement Data

Overview

Internal data arrays allows you to retrieve all measurement results
throughout a particular trace. Alternatively, markers allow you to retrieve
measurement results at your specified points. For information on how to
retrieve marker values, refer to Retrieving measurement results at marker
positions.

Retrieving Internal Data Arrays

You can chose between the ASCII and binary data transfer formats when
you retrieve internal data arrays. For more information, please refer to
Data Transfer Format.

Sample Program

See Reading Data in Ascii Format and Reading Data in Binary Format.

1092

Programming

Entering Data into a Trace
e« Overview
« Sample Program

Other topics about Reading-Writing Measurement Data

Overview

You can change the data/memory trace on the LCD by writing the new
data into the Formatted data array/Formatted memory arrays.

When you write data into formatted data/memory array, you can choose
either the ASCII or binary transfer format (see Data Transfer Format).

Using the ASCII Transfer Format to Write Formatted Data Arrays
(write_a.htb) and Using the Binary Transfer Format to Write Formatted
Data Arrays (write_b.htb) show sample programs that demonstrate how to
write data into formatted data arrays. The sample program in Using the
ASCII Transfer Format to Write Formatted Data Arrays (write_a.htb) uses
the ASCII transfer format while the sample in Using the Binary Transfer
Format to Write Formatted Data Arrays (write_b.htb) uses the binary
transfer format. You can find the source files of these programs, named
write_a.htb and write_b.htb, on the sample program disk.

Each of the sample programs holds the sweep on channel 1, retrieves the
data from a specified file (a file saved measurement data using the
:MMEM:STOR:FDAT command), and populates trace 1 for channel 1 with
the retrieved data.

Sample Program

See Writing Data in Ascii Format and Writing Data in Binary Format.

1093

E5071C

Analyzing Data
Analyzing Data
« Retrieving Measurement Results at Specified Points
» Searching for Positions That Match Specified Criteria
« Bandwidth Search
e Notch Search
» Statistical Analysis
o Analysis Using the Fixture Simulator
e Analysis in Time Domain (time domain function)
« Analyzing impedance

1094

Programming

Retrieving Measurement Results at Specified Points
e« Overview
o Showing/Hiding Markers
o Turning ON/OFF Reference Marker Mode
o Setting and Retrieving Stimulus Value at Marker Positions
o Retrieving Measurement Results at Marker Positions
Other topics about Analyzing Data

Overview

Markers allow you to retrieve measurement results at specified points. You
can use up to nine markers for each trace, and you can move them to any

point on the trace. In addition to the regular markers, you can use a
reference marker.

Showing/Hiding Markers

To show or hide markers, including the reference marker, use the following
command:

:CALC{1-36}:MARK{1-10}

You can move markers or retrieve the data at a
marker even when the markers are hidden.

The display of the reference marker is turned on or
off when you turn On or Off Reference Marker mode.
Turning ON/OFF Reference Marker Mode

Turning on Reference Marker mode provides relative marker values with
respect to the reference marker (by subtracting the value at the reference
marker from the value at a particular marker).

To turn On or Off Reference Marker mode, use the following command:
:CALC{1-36}:MARK:REF

Setting and Retrieving Stimulus Value at Marker Positions
To set (or change along the frequency axis) the stimulus value at a

particular marker or the reference maker or to retrieve the current
stimulus value, use the following command:

:CALC{1-36}:MARK{1-10}:X
When Reference Marker mode is on, the stimulus value at a regular marker
is a relative stimulus value obtained by subtracting the stimulus value at

the reference marker from the actual stimulus value at that particular
marker.

Retrieving Measurement Results at Marker Positions

1095

E5071C

To retrieve the measurement results (response values) at a particular
marker or the reference marker, use the following command:
:CALC{1-36}:MARK{1-10}:Y?

When Reference Marker mode is on, the response value at a regular
marker is a relative value obtained by subtracting the response value at
the reference marker from the actual response value at that particular
marker.

1096

Programming

Searching for Positions Matching Specified Criteria
e« Overview
o Using Marker Search

e Analysis Commands

e Sample Program

Other topics about Analyzing Data

Overview

You can search for a position that matches specified criteria by using the
Marker Search feature or analysis commands.

Using Marker Search

Marker Search is available whether the markers are
shown or hidden.

Setting the Search Range

You can use either the entire sweep range or a user-defined range for the
marker search range by using the following command:

:CALC{1-36:MARK:FUNC:DOM

When you opt to use a user-defined range, use the following commands to
set the range:

Description Command

Start value (lower limit value) :CALC{1-36}:MARK:FUNC:DOM :STAR

Stop value (upper limit value) :CALC{1-36}:MARK:FUNC:DOM :STOP

You can also select whether to specify the marker search range
independently for each trace by using the following command.

:CALC{1-36}:MARK:FUNC:DOM:COUP

Selecting a Search Type

Marker Search allows you to choose from the following eight search types:
= Maximum value
= Minimum value
= Peak (3 types)

« Maximum peak (for a positive peak), minimum peak (for a
negative peak)

« Peak nearest to the marker position on its left-hand side

1097

E5071C

o Peak nearest to the marker position on its right-hand side
= Target (3 types)
o Peak nearest to the marker position
» Target nearest to the marker position on its left-hand side
o Target nearest to the marker position on its right-hand side
To select a search type, use the following command:
:CALC{1-36}:MARK{1-10}:FUNC:TYPE

Defining a Peak

You can define a peak by specifying the lower limit for the peak excursion
value and polarity (positive or negative peak).

To define a peak, use the following commands:

Lower limit for :CALC{1-36}:MARK{1-10}:FUNC:PEXC
the peak excursion value

Polarity :CALC{1-36}:MARK{1-10}:FUNC:PPOL

Defining a Target

You can define a target by specifying the target value (response value) and
transitional direction (positive or negative value change).

To define a target, use the following commands:

Target value :CALC{1-36}:MARK{1-10}:FUNC:TARG

Transitional direction :CALC{1-36}:MARK{1-10};FUNC:TTR

Performing Marker Search

To perform Marker Search, use the following command:
:CALC{1-36}:MARK{1-10}:FUNC:EXEC

To turn On or Off the Search Tracking feature, which performs Marker
Search every time the trace is updated, use the following command:

:CALC{1-36)}:MARK{1-10}:FUNC:TRAC

Retrieving Search Results

Performing Marker Search moves the marker to the points that matches
the search criteria, so you can obtain the search results by retrieving the
marker value. For information on how to retrieve marker values, refer to

1098

Programming

Setting (changing) and retrieving stimulus value at marker positions and
Retrieving measurement results at marker positions.

Analysis Commands

You can use the analysis Commands to perform search and analysis.

Setting the Search (Analysis) Range

You can use either the entire sweep range or a user-defined range as the
search (analysis) range by using the following command:

:CALC{1-36}:FUNC:DOM

When you opt to use a user-defined range, use the following commands to
set the range:

Start value (lower limit value) :CALC{1-36}:FUNC:DOM:STAR

Stop value (upper limit value) :CALC{1-36};FUNC:DOM:STOP

You can also select whether to specify the marker search (analysis) range
independently for each trace by using the following command:

:CALC{1-36}:FUNC:DOM:COUP

Selecting the Search (Analysis) Type

The analysis commands allows you to choose from the following five search
types:

= Maximum value
= Minimum value
= Maximum peak (for a positive peak), minimum peak (for a negative

peak)
= All peaks
= All targets

In addition, you can choose from the following three analysis types:
= Difference between the maximum and minimum values
= Standard deviation
= Average
To select the search (analysis) type, use the following command:
:CALC{1-36}:FUNC:TYPE

Defining a Peak

1099

E5071C

You can define a peak by specifying the lower limit for the peak excursion
value and polarity (positive or negative peak).

To define a peak, use the following commands:

Lower limit for the peak excursion value | :CALC{1-36}:;FUNC:PEXC

Polarity :CALC{1-36}:FUNC:PPOL

Defining a Target

You can define a target by specifying the target value (response value) and
transitional direction (positive or negative value change).

To define a target, use the following commands:

Target value :CALC{1-36}:FUNC:TARG

Transitional direction :CALC{1-36}.;FUNC:TTR

Performing Search (Analysis)

To perform search (analysis), use the following command:
:CALC{1-36}:FUNC:EXEC

Retrieving Search (Analysis) Results

To retrieve search (analysis) results, use the following command:
:CALC{1-36}:FUNC:DATA?

The number of data items contained in search (analysis) results differ
depending on the search (analysis) type and the number of points found

by the search operation. To retrieve the number of data items, use the
following command:

:CALC{1-36}:FUNC:POIN?

Sample Program

See Peak Search.

1100

Programming

Bandwidth Search
e« Overview
o Setting Bandwidth Definition Value
o Retrieving Bandwidth Search Results

e Sample Program

Other topics about Analyzing Data

Overview

The E5071C has a feature called Bandwidth Search. This feature searches
for the cutoff points on both right- and left-hand sides of the marker
position on the trace.

= Bandwidth (BW= high-low)

= Center frequency (cent= {high+low}/2))

= Q value (Q=cent/BW)

= Loss (response value at the marker position)

Where high is the right-hand cutoff point frequency;low is the left-hand
cutoff point frequency.
Setting Bandwidth Definition Value

Bandwidth Search finds a point whose response value is different, by the
amount defined as the bandwidth definition value, from the response value
at the marker position, and identifies that point as the cutoff point.

To set the bandwidth definition value, use the following command:
:CALC{1-36}:MARK{1-10}:BWID:THR

Retrieving Bandwidth Search Results

Once you have moved the marker to the appropriate position using Marker
Search or some other feature, you can retrieve the results of Bandwidth
Search by using the following command:

:CALC{1-36}:MARK{1-10}:BWID:DATA?

Also, you can use the following command to control whether to display the
results of Bandwidth Search on the LCD:

:CALC{1-36}:MARK:BWID

You can retrieve the results of Bandwidth Search even after you have
turned off the display of markers or the results of Bandwidth Search.

Sample Program

See Bandwidth Search.

1101

E5071C

Notch Search

e« Overview

» Setting the notch definition value

o Displaying the notch search result

o Reading out the notch search result

Other topics about Analyzing Data

Overview

The notch search function is used to obtain the bandwidth, center
frequency, cutoff points (high-frequency side and low-frequency side), Q
and insertion loss of a trace based on the active marker position. The notch
search function starts at the left side of the active marker position, and
ends when points that meet the condition are found.

o Bandwidth (BW = high - low)

o Center frequency (cent = (high +low)/2)
o Q value (Q = cent/BW)

o Loss (response value at marker position)

Where, high is the right-hand cutoff point frequency, and low is the left-
hand cutoff point frequency.

For more information on notch search, see
Determining the bandwidth of a trace (Notch Search)

Setting the notch definition value

The notch search function finds a point whose response value is different,
by the amount defined as the notch definition value, than the response
value at the marker position, and identifies that point as the cutoff point.

To set the notch definition value, use the following command:
:CALC{Ch}:MARK{1-10}:NOTC:THR

Displaying the notch search result

The following command is used to control whether to display the notch
search result on the LCD:

:CALC{Ch}:MARK:NOTC

Reading out the notch search result

Once the marker is moved to an appropriate position using the marker
search function or some other function, it is able to retrieve the notch
search result using the following command:

:CALC{Ch}:MARK{1-10}:NOTC:DATA

1102

Programming

It is able to retrieve the notch search result
regardless of whether the marker display and the notch search
result display is on/off.

1103

E5071C

Statistical Analysis

The E5071C provides a mechanism that analyzes trace statistics. You can
analyze the following statistics:

= Average

= Standard deviation

= Difference between the maximum and minimum values
To retrieve the results of statistical analysis, use the following command:
:CALC{1-36}:MST:DATA?
Also, you can use the following command to control whether to display the
results of statistical analysis on the LCD:
:CALC{1-36}:MST

You can retrieve the results of statistical analysis

even after you have turned off the display showing these
results.

Alternatively, you can use the analysis commands to analyze the trace
statistics. When you use the analysis commands, you can analyze the trace
data in a specific range as well as the trace data throughout the entire
sweep range. For information on how to use the analysis commands, refer
to Analysis Commands.

Other topics about Analyzing Data

1104

Programming

Analysis Using Fixture Simulator

Overview
Matching Circuit Embedding
Port Impedance Conversion

Network De-embedding

4-Port Network Embedding/De-embedding

Balance-Unbalance Conversion (only 3-port/4-port models)
Differential Matching Circuit Embedding (only 3-port/4-port models)
Differential Port Impedance Conversion (only 3-port/4-port models)
Sample Program

Other topics about Analyzing Data

Overview

The Fixture Simulator provides the following functions:

Matching Circuit Embedding

Port Impedance Conversion

Network De-embedding

4-Port Network Embedding/De-embedding

Balance-Unbalance Conversion (only 3-port/4-port models)
Differential Matching Circuit Embedding (only 3-port/4-port models)
Differential Port Impedance Conversion (only 3-port/4-port models)

Before you can use any of the features listed above, you must turn on the
desired feature individually and issue the following command to turn on the
Fixture Simulator:

:CALC{1-36}:FSIM:STAT

Matching Circuit Embedding

The Matching Circuit feature simulates the characteristics that the DUT
would exhibit when connected to a matching circuit.

On/Off
To turn on or off the Matching Circuit, use the following command:
:CALC{1-36}:FSIM:SEND:PMC:STAT

You can only turn on or off Matching Circuit for all the ports, not for each
port individually. However, any port whose circuit type is set to "None"
behaves as if this feature were permanently off.

Configuring the Matching Circuit Settings

To select a circuit type, use the following command:

1105

E5071C

:CALC{1-36}:FSIM:SEND:PMC:PORT{1-4}
To set the circuit constant, use the following commands:

Circuit constant | Command

C :CALC{1-36}:FSIM:SEND:PMC:PORT{1-4}:PAR:C
G :CALC{1-36}:FSIM:SEND:PMC:PORT{1-4}:PAR:G
L :CALC{1-36}:FSIM:SEND:PMC:PORT{1-4}:PAR:L
R :CALC{1-36}:FSIM:SEND:PMC:PORT{1-4}:PAR:R

When you want to use a user file to define the circuit type, specify the file
by using the following command:

:CALC{1-36}:FSIM:SEND:PMC:PORT{1-4}:USER:FIL
Port Impedance Conversion

The Port Impedance Conversion feature converts the measurement results
with a port impedance of 50 ohm to the characteristics of a different port
impedance.

On/Off
To turn on or off Port Impedance Conversion, use the following command:
:CALC{1-36}:FSIM:SEND:ZCON:STAT

You can only turn on or off Port Impedance Conversion for all of the ports,
not for each port individually. However, any port with ZO set to 50
ohm behaves as if this feature were permanently off.

Setting the Z0 Value

To set the target port impedance, use the following command:
:CALC{1-36}:FSIM:SEND:ZCON:PORT{1-4}:Z0
:CALC{1-36}:FSIM:SEND:ZCON:PORT{1-4}:REAL
:CALC{1-36}:FSIM:SEND:ZCON:PORT{1-4}.IMAG

Network De-embedding

The Network De-embedding feature eliminates any network that can cause
error between the calibration level and the DUT.

On/Off

To turn on or off Network De-embedding, use the following command:
:CALC{1-36}:FSIM:SEND:DEEM:STAT

You can only turn on or off Network De-embedding for all of the ports, not
for each port individually. However, any port whose Network De-

1106

Programming

embedding type is set to "None" behaves as if this feature were
permanently off.

Selecting a Type
To select a Network De-embedding type, use the following command:

:CALC{1-36}:FSIM:SEND:DEEM:PORT{1-4}

Specifying the File
To specify the file that defines the criteria for Network De-embedding, use
the following command:
:CALC{1-36}:FSIM:SEND:DEEM:PORT{1-4}:USER:FIL
4-Port Network Embedding/De-embedding

The 4-port Network Embedding/De-embedding feature is provided to
embed or de-embed a network (defined in a 4-port touchstone file)
between the calibration surface and the DUT.

On/Off

To turn on or off the 4-port network embedding/de-embedding feature,
use the following command:

:CALC{1-36}:FSIM:EMB:STAT

Setting Topology (connection method between analyzer and DUT)
To select a connection type, use the following command:
:CALC{1-36}:FSIM:EMB:TYPE

Connection type

1107

E5071C

Conneclion Type &
1 3
AIBELE] Network 1 (k) Connection Type C
{defined in 4-por DuT
B_2| fouchstone data file) |4 frakzer a1 Netrork 1 (k)
I Ny

(dafined in 4-port
B 2| touchstone data file)

=

e 1 " DUT
Network 2 (nwk2)
{:ﬁﬂfﬁﬁk}n |ﬂ?¥ B 4 2 Edel‘ur?etd in 4d—pt|:|rtm N’
s Sl] ouchstone data file
Network 1 (nwk1)
{defined in 4-port DUT |
B 2| jouchstone data file) u
g
@BlF 1e313

To assign the ports (ports a through d in Connection_type), use the
appropriate command that matches your selected connection type, as
identified in the following table:

Connection type Command

A :CALC{1-36}:FSIM:EMB:TOP:A:PORT
B :CALC{1-36}:FSIM:EMB:TOP:B:PORT
C :CALC{1-36}:FSIM:EMB:TOP:C:PORT

Selecting Processing Type (embedding/de-embedding)

To select a network processing type, use the following command:

:CALC{1-36}:FSIM:EMB:NETW{1-2}:TYPE

Specifying File

To select a file that defines the criteria for network embedding/de-

embedding, use the following command:
:CALC{1-36}:FSIM:EMB:NETW{1-2}:FIL

Balance-Unbalance Conversion
The Balance-Unbalance Conversion feature converts the measurement
results obtained in an unbalanced state to the characteristics of a balanced
state. You can select mixed mode S parameter, balance and CMRR as the
measurement parameter when you turn on Balance-Unbalance Conversion.

1108

Programming

On/Off

You can turn on or off Balance-Unbalance Conversion for each trace
individually. To turn on or off Balance-Unbalance Conversion, use the
following command:

:CALC{1-36}:FSIM:BAL:PAR{1-36}.STAT

Setting the Topology

To select a balance device type, use the following command:
:CALC{1-36}:FSIM:BAL:DEV

Balance device type
Balance Device Type:Unbalance-Balancs (SBALanced)

Logical Post 1 {Unbalance} -- Poit@as— DUT : ::'*1__ Legical Port 2 (Balance}
EE— oL (Ealance Port. 1)

Balance Device Twa-Ealams EHHE&{BB&LME;BEI}
F"E}FIE! —

Logleal Port 1 (Balancs) -
oy ! wE) gpﬂi‘ib_' F'om:l;

fBslancs Port 1)

== Lagical Port 2 (Balance]
(Eadanee Fort 2)

Balance Device Type:Unbalance-Unbalance-Balance (SSBalanced)

Logical Pert 1 (Unbalance) -- Pt as—| Pote | _
D 2 == Logical Porl & (Balance)
L

To assign the ports (ports a through d in Balance_device_type), use the
command that matches your selected device type, as identified in the
following table:

Device Type Command

Unbalance-balance (SBALanced) :CALC{1-36}:FSIM:BAL:TOP
:SBAL

Balance-balance (BBALanced) :CALC{1-36}:FSIM:BAL:TOP
:BBAL

Unbalance-unbalance-balance :CALC{1-36}:FSIM:BAL:TOP

(SSBalanced) :SSB

1109

E5071C

Selecting the Measurement Parameter

To select the measurement parameter, use the command that matches
your selected device type, as identified in the following table:

Device Type Command
Unbalance-balance :CALC{1-36}:FSIM:BAL:PAR{1-36} :SBAL
Balance-balance :CALC{1-36}:FSIM:BAL:PAR{1-36} :BBAL

Unbalance-unbalance-balance :CALC{1-36}:FSIM:BAL:PAR{1-36} :SSB

Differential Matching Circuit Embedding

The Differential Matching Circuit Embedding feature simulates the
characteristics the DUT would exhibit if a balance-unbalance converted
differential port were connected to a matching circuit after being subjected
to balance-unbalance conversion.

On/Off

To turn on or off Differential Matching Circuit Embedding, use the following
command:

:CALC{1-36}:FSIM:BAL:DMC:STAT

You can only turn on or off Differential Matching Circuit Embedding for all
of the ports, not for each balance port individually. However, any balance
port whose circuit type is set to "None" behaves as if this feature were
permanently off.

Configuring the Matching Circuit Settings

To select a circuit type, use the following command:
:CALC{1-36}:FSIM:BAL:DMC:BPOR{1-2}

To set the circuit constant, use the following commands:

Circuit constant | Command
C :CALC{1-36}:FSIM:BAL:DMC:BPOR{1-2}:PAR:C
G :CALC{1-36}:FSIM:BAL:DMC:BPOR{1-2}:PAR:G
L :CALC{1-36}:FSIM:BAL:DMC:BPOR{1-2}.PAR:L
R :CALC{1-36}:FSIM:BAL:DMC:BPOR{1-2}.PAR:R

When you want to use a user file to define the circuit type, specify the file
using the following command:

1110

Programming

:CALC{1-36}:FSIM:BAL:DMC:BPOR{1-2}:USER:FIL

Differential Port Impedance Conversion

The Differential Port Impedance Conversion feature converts the
measurement results for a balance-unbalance converted differential port to
the characteristics of a different port impedance.

On/Off

To turn on or off Differential Port Impedance Conversion, use the following
command:

:CALC{1-36}:FSIM:BAL:DZC:STAT

You can only turn on or off Differential Port Impedance Conversion for all
of the balance ports, not for each port individually.

Setting the Z0 Value

To set the target differential port impedance, use the following command:
:CALC{1-36}:FSIM:BAL:DZC:BPOR{1-2}:Z0
:CALC{1-36}:FSIM:BAL:DZC:BPOR{1-2}:REAL
:CALC{1-36}:FSIM:BAL:DZC:BPOR{1-2}:IMAG

Sample Program

See Fixture Simulator.

1111

E5071C

Analysis in Time Domain (time domain function)
e Overview
e Transforming Measurement Data to Time Domain

« Sample Program

Other topics about Analyzing Data

Overview

The time domain function provides the following functions:

« Transforming measurement data to data in the time domain
(Transformation Function)

o Deleting unnecessary measurement data in the time domain (Gating
Function)

Transforming Measurement Data to Time Domain

By using the Transformation Function, you can convert the results
measured in the frequency domain to data in the time domain and analyze
it.

On/Off

To turn on or off the transformation function, use the following command:
:CALC{1-36}.TRAN:TIME:STAT

Selecting Transformation Type

To select the transformation type (band pass/low pass), use the following
command:

:CALC{1-36}: TRAN:TIME

To select the stimulus type (impulse/step) when the transformation type is
low pass, use the following command:

:CALC{1-36}: TRAN:TIME:STIM

When the transformation type is low pass, you need to execute the
following command because each measurement point must be a multiple of
the start frequency.

:CALC{1-36}: TRAN:TIME:LPFR

Setting Window Shape

To set the window shape, use one of the following items.

Item Command

B :CALC{1-

1112

36} TRAN:TIME:KBES

Impulse width

:CALC{1-
36}: TRAN:TIME:IMP :WIDT

Rise time of step

signal

:CALC{1-
36} TRAN:TIME:STEP
:RTIM

Programming

The above three items are dependent on each other. When the value of
one of them is changed, the values of the other two are automatically
changed to corresponding values.

Unlike manual operation, you cannot set the window shape by selecting
the window type (maximum/normal/minimum). However, you can set the

same shape as each window type by setting g as follows:

Maximum

Normal

Minimum

Value of B8

13

6

0

Setting Display Range

To set the display range after time domain transformation, use the
following commands:

Description

Command

Start value

:CALC{1-36}: TRAN:TIME:STAR

Stop value

:CALC{1-36}: TRAN:TIME:STOP

Center value

:CALC{1-36}: TRAN:TIME:CENT

Span value

:CALC{1-36}: TRAN:TIME:SPAN

Deleting unnecessary measurement data in the time domain

You can use the Gating Function to delete unnecessary time domain data.

On/Off

To turn on or off the gating function, use the following command:
:CALC{1-36}:FILT:TIME:STAT

Selecting Gate Type

To select the gate type, use the following command:

:CALC{1-36}:FILT:TIME

1113

E5071C

Setting Gate Shape

To select the gate shape, use the following command:
:CALC{1-36}:FILT:TIME:SHAP

Setting Gate Range

To set the gate range, use the following commands:

Description Command

Start value :CALC{1-36}:FILT:TIME:STAR

Stop value :CALC{1-36}:FILT:TIME:STOP

Center value :CALC{1-36}:FILT:-TIME:CENT

Span value :CALC{1-36}:FILT:TIME:SPAN

Sample Program

See the Time Domain.

1114

Programming

Analyzing impedance

By turning on the parameter conversion function, you can convert the
measurement result of the S parameter to the following parameters.

= Equivalent impedance in reflection measurement

= Equivalent impedance in transmission measurement
= Equivalent admittance in reflection measurement

= Equivalent admittance in transmission measurement
= Inverse of S-parameter (1/S)

To turn On/Off the parameter conversion function, use the following
command:

:CALC{1-36}:CONV

To select the parameter to which you want to convert the measurement
result, use the following command:

:CALC{1-36}:CONV:FUNC
Other topics about Analyzing Data

1115

E5071C

Limit Test
Limit Test

o Performing a Limit Test
o Obtaining Test Results

1116

Programming

Performing a Limit Test
o Configuring Limit Lines
« Showing/Hiding Limit Lines
e Turning Limit Test Feature ON/OFF
« Showing/Hiding "Fail"
Other topics about Limit Test

Configuring Limit Lines
The Limit Test feature of the E5071C allows you to create up to 100

upper/lower limit lines on each trace and then determine the pass/fail
status of the measured data.

When you manually configure limit lines, you must add each segment
(limit line) to the limit table and define various conditions that apply to the
specific segment. On the other hand, when you use an external controller
to configure limit lines, you can use the following command to define all of
the segment conditions (all limit lines) in the active table trace at once.
:CALC{1-36}:.LIM:DATA
Alternatively, you can configure limit lines based on the data contained in a
CSV file by issuing the following command:

‘MMEM:LOAD:LIM

Also, you can save the contents of the current limit table to a file by
issuing the following command:
‘MMEM:STOR:LIM

Showing/Hiding Limit Lines
To turn ON or OFF limit lines, use the following command:
:CALC{1-36}:LIM:DISP
Even when limit lines are hidden, the system performs a limit test if the
Limit Test feature is on.

Turning Limit Test Feature ON/OFF
To turn ON or OFF the Limit Test feature, use the following command:
:CALC{1-36}:LIM

Showing/Hiding "Fail"
To turn ON or OFF the "Fail" indicator that is displayed at the center of the

window when the test result for the channel is "fail," use the following
command:

:DISP:FSIG

1117

E5071C

Obtaining Test Results
e Overview
o Test Results at each Measurement Point

o Test Results for each Trace

o Test Results for each Channel

e Overall Test Results

Other topics about Limit Test

Overview

You can obtain test results by issuing a result retrieval command or
through the status register.

Test Results at each Measurement Point

Using commands that retrieve test results

You can obtain the test results at each measurement point by retrieving
the stimulus value at failed measurement points. To retrieve failed
measurement points, use the following command:

Stimulus value :CALC{1-36}.LIM:REP?

Number of measurement points | :CALC{1-36}:LIM:REP:POIN?

Using the status register

You cannot use the status register to obtain the test results at each
measurement point.

Test Results for each Trace

Using commands that retrieve test results

You can retrieve the test result for each trace (i.e., the trace-wide result
that combines the results for all measurement points in a particular trace)
by issuing the following command:

:CALC{1-36}:LIM:FAIL?

Using the status register

The condition register and event register under the questionable limit
channel {1-16} status register provide 14 bits that correspond to traces 1
to 14 and contain the test results (0: Pass, 1: Fail) for the respective
traces; for example, you can obtain the test result for trace 1 from bit 1
and that for trace 14 from bit 14. The condition register and event register

1118

Programming

under the questionable limit channel {1-16} extra status register provide
two bits that correspond to traces 15 to 16 and contain the test results (0:
Pass, 1: Fail) for the respective traces; for example, you can obtain the
test result for trace 15 from bit 1 and that for trace 16 from bit 2.

Every bit of the condition register is set to 0 when a measurement cycle is
started. Upon completion of measurement, those bits that correspond to
failed traces are set to 1.

If the corresponding bit of the positive transition filter is set to 1 (preset
value), each bit of the event register is set to 1 when the corresponding bit
of the condition register changes from 0 to 1 (indicating that the
corresponding trace failed the test).

To retrieve the registers, use the following commands:

Questionable limit channel {1-16} status register

Condition register :STAT:QUES:LIM:CHAN{1-16}:COND?

Event register :STAT:QUES:LIM:CHAN{1-16}?

Questionable limit channel {1-16} extra status register

Condition register :STAT:QUES:LIM:CHAN{1-16}:ECH:COND?

Event register :STAT:QUES:LIM:CHAN{1-16}:ECH?

Although up to 36 channel is available on E5071C,
the registers for limit test and Ripple/Bandwidth limit tests are
for up to 16 channel.

Test Results for each Channel

Using commands that retrieve test results

No command is available that allows you to directly retrieve the test result
for each channel (i.e., the channel-wide result that combines the results
for all traces in a particular channel).

Using the status register

The questionable limit status event register provides 14 bits that
correspond to channels 1 to 14 and contain the test results (0: Pass, 1:
Fail) for the respective channels; for example, you can obtain the test
result for channel 1 from bit 1 and that for channel 14 from bit 14. The
questionable limit extra status event register provides nine bits that
correspond to channels 1 to 2 and contain the test results (0: Pass, 1: Fail)

1119

E5071C

for the respective channels; for example, you can obtain the test result for
channel 15 from bit 1 and that for channel 16 from bit 2.

Every bit of the condition register is set to 0 after the event registers are
cleared by the *CLS. Upon completion of measurement, if the channel-wide
test result that combines the results for all traces in a channel is "fail," the
corresponding bit of the condition register is set to 1.

If the corresponding bit of the positive transition filter is set to 1 (preset
value), every bit of the event register is set to 1 when the corresponding
bit of the condition register changes from 0 to 1.

To retrieve the registers, use the following commands:

Questionable limit status register

Condition register | :STAT:QUES:LIM:COND?

Event register :STAT:QUES:LIM?

Questionable limit extra status register

Condition register :STAT:QUES:LIM:ELIM:COND?

Event register :STAT:QUES:LIM:ELIM?

Obtaining test results for a channel (channel 1 in this example) using the status register

1120

i1 g i o

Programming

m%mﬁmﬁ
£STAT

%ﬁm'&ﬁm
e R connn

ETATRUES LIMCHARTENAR 32066

gﬁus Exeni “:rg' 1

SETATOUES LI CHAR TS

- o] o B ke Plabd cas L bR pas s Thbe Tl

Crmchgrable Lomtdlerng! 1 Dt St Srable Boamdsr

i

Tt ﬁp:
Renul Rnd} Enul b

F & &

L o] of of of of of of of of of of af of s] df
[T TS I = T f fa T.a Tsf.r 5 fn
Ll LLLL
flpidel ol ol “-a
. %“"r%"‘r%"'r%"‘ .l.g.t 1 .rﬁ.r.
%‘Tﬁ
TETGh WE GIN 4h oW el W2 o 1R W & W6 1

SRIT 13T

Overall Test Results

Using commands that retrieve test results

ETATOUES LIKECHANT SOHENLE §

TR

e

11
%ﬁf"ﬁ it

No command is available that allows you to directly retrieve the overall
test results that combine the test results for all channels.

Using the status register

The condition register and event register under the questionable status
event register each provides bit 10, from which you can obtain the overall

test result (0: Pass, 1: Fail).

1121

E5071C

The condition register's bit 10 is set to 0 after the event registers are
cleared by the *CLS. Upon completion of measurement, this bit is set to 1
if the overall test result that combines the results for all channels is "fail."

If the positive transition filter's bit 10 is set to 1 (preset value), the event
register's bit 10 is set to 1 when the condition register's bit 10 changes
from O to 1.

To retrieve the condition register and event register under the questionable
status event register, use the following commands:

Condition register | :STAT:QUES:COND?

Event register :STAT:QUES?

Obtaining overall test results using the status register

1122

Programming

Emeshraile LimiEria Slalns bl Regisley ’
| ”['3] “[U‘] 0(0[Ul Dl u(u[::(u(al 1 11 o | ETATOLER LR 2L R BRI S

Pis i e T P Tio Fo %e ¥ ¥ s Fa T E -

oL BTl O B R e T o m W

20T 14l

1123

E5071C

Saving and Recalling
Saving and Recalling

« Saving and Recalling File
« Managing Files

1124

Programming

Saving and Recalling File

o Specifying File

e Saving and Recalling Instrument Status

e Saving Measurement Data

e Saving Measurement Data in Touchstone Format

e Saving Images

« Saving and Recalling Segment Sweep Table

e Saving and Recalling Limit Table

o« Saving/Recalling Power Sensor Calibration Factor Table

e Saving/Recalling Loss Compensation Table

e Saving/Loading (Importing) a VBA Program

Other topics about Saving and Recalling
Specifying File

When running a command for saving, recalling, and managing files, use a
filename with extension to specify a particular file. Specify "D:" in the
beginning of the file name, when specifying a file on the user area of hard
disk. Also, when specifying a file name with directory, use "/" (slash) or "\"
(backslash) as a delimiter.

Saving and Recalling Instrument Status

You can save the instrument state using one of the following 2 methods:
= Saving the entire instrument state into a file
= Saving the state for each channel into registers A to D (volatile
memory)

Selecting content to be saved

When saving the instrument status into a file or register, the content to be
saved can be selected among the following 4 options:

= Instrument status only
= Instrument status and calibration coefficient array.

= Instrument status, corrected data/memory array (measurement
data)

= Instrument status, calibration coefficient array, and corrected
data/memory array (measurement data)

To select a content to be saved, use the following command:
‘MMEM:STOR:STYP

1125

E5071C

Selecting Content to be Saved

To select whether to save the setting of all channels/traces or that of the
displayed channels/traces, use the following command:

"MMEM:STOR:SALL

Saving and recalling entire instrument status

To save the entire instrument status into a file, use the following
command:

‘MMEM:STOR
Recalling a file saved with the above command can reproduce the status

when it was saved. To recall the settings from a file, use the following
command:

:MMEM:LOAD

Auto recall

The file saved with the name autorec.sta or A:autorec.sta will be
automatically recalled when the E5071C is powered ON.

Saving the state for each channel into a register

For the active channel, when you want to save the instrument state
specific to that channel into only one of the registers A to D, use the
following command:

‘MMEM:STOR:CHAN

Recalling an instrument state saved in a register can reproduce it as the
state of the active channel. To recall a register, use the following
command:

‘MMEM:LOAD:CHAN

It is possible to recall a file from a different channel
where it was saved.

The contents in the registers are lost when you turn OFF the power. You
can delete (clear) the contents of all registers using the following
command.

‘MMEM:STOR:CHAN:CLE

Saving Measurement Data

Measurement data (in a formatted data array) can be saved to a file in
CSV (Comma Separated Value) format.

To save measurement data in a file, use the following command:
‘MMEM:STOR:FDAT

1126

Programming

Executing the above command will save the measurement data of the
active trace. Note that the data saved using the above command cannot be
recalled from the E5071C.

Saving Measurement Data in Touchstone Format

Measurement data for the active channel can be saved to a file in
touchstone format.

To determine a file type in touchstone file format and specify a port, use
one of the following commands according to the number of ports used:

e :MMEM:STOR:SNP:TYPE:S1P
e MMEM:STOR:SNP:TYPE:S2P
e MMEM:STOR:SNP:TYPE:S3P
e :MMEM:STOR:SNP:TYPE:S4P

To set a data type for files saved in touchstone format, use the following
command:

‘MMEM:STOR:SNP:FORM
To save measurement data in touchstone format, use the following
command:
‘MMEM:STOR:SNP
« Only trace data of frequency sweep can be saved in touchstone
format files.Trace data of frequency offset measurement and
power sweep measurement cannot be saved.

Saving Images

Images displayed on the LCD screen can be saved to a file in the bitmap
(.bmp) or portable network graphics (.png) format.

To save the screen image to a file, use the following command:
‘MMEM:STOR:IMAG

Executing the above command will save the screen image when the
command is invoked.

o This gives different screen image results from those obtained by
pressing the [capture] key on the front panel.

Saving and Recalling Segment Sweep Table

Segment sweep table can be saved in the file with CSV (Comma Separated
Value) format.

To save segment sweep table on a file, use the following command:
‘MMEM:STOR:SEGM

Executing the above command will save the segment sweep table for the
active channel.

1127

E5071C

Recalling the file saved using the above command can reproduce the
segment sweep table on the active channel.

To recall the settings from a file, use the following command:
‘MMEM:LOAD:SEGM

o It is possible to recall a file from a different channel where it
was saved. Note that recalling operation is not guaranteed for
the file that might have been modified with editor.

Saving and Recalling Limit Table

Limit table can be saved in the file with CSV (Comma Separated Value)
format. To save limit table on a file, use the following command:

‘MMEM:STOR:LIM

Executing the above command will save the limit table for the active trace
of the active channel.

Recalling the file saved using the above command can reproduce the limit
table on the active trace of the active channel. To recall the settings from a
file, use the following command:

‘MMEM:LOAD:LIM

o It is possible to recall a file from a different channel or trace
where it was saved. Note that recalling operation is not
guaranteed for the file that might have been modified with
editor.

Saving/Recalling Power Sensor Calibration Factor Table

The power sensor calibration table can be saved in the file with CSV
(Comma Separated Value) format. To save the power sensor calibration
factor table that is set specifically to the E5071C into a file, use the
following commands:

e :MMEM:STOR:ASCF
e MMEM:STOR:BSCF

Recalling a file saved with the above command can reproduce the power
sensor calibration factor table when it was saved. To recall the settings
from a file, use the following command:

e MMEM:LOAD:ASCF
e MMEM:LOAD:BSCF

« Recalling operation is not guaranteed for the file that might
have been modified with editor.

Saving/Recalling Loss Compensation Table

The loss compensation table can be saved in the file with CSV (Comma
Separated Value) format.To save the loss compensation table that is set
for each port into a file, use the following command:

1128

Programming

‘MMEM:STOR:PLOS{1-4}
Executing the above command will save the loss compensation table for
the active channel.

Recalling the file saved using the above command can reproduce the loss
compensation table on the active channel. To recall the settings from a file,
use the following command:

‘MMEM:LOAD:PLOS{1-4}

o It is possible to recall a file from a different channel or port
where it was saved. Note that recalling operation is not
guaranteed for the file that might have been modified with
editor.

Saving/Loading (Importing) a VBA Program

Saving

Only the VBA project file can be saved using command.

To save the VBA project that is opened on the VBA editor on the file, use
the following command.

‘"MMEM:STOR:PROG

Loading (importing)

To load the VBA project to the VBA editor, or to import the module/form
file, use the following command.

:MMEM:LOAD:PROG

Executing above command will load/import the file according to its
extension as follows:

Extension File type

vba VBA Project

bas Standard module
frm User Forms

cls Class Modules

Sample program

See the Saving Files.

1129

E5071C

Managing Files
o Various Commands

e Sample Program

Other topics about Saving and Recalling

Various Commands

Creating directory (folder)

To create a directory (folder), use the following command:
:MMEM:MDIR

Deleting file (directory)

To delete a file or a directory, use the following command:
:MMEM:DEL

Copying file

To copy a file, use the following command:
:MMEM:COPY

Transferring files

File transfer from the external controller to the E5071C can be possible by
reading data from a file on the controller and then writing them to the file
on the E5071C.

:MMEM:TRAN

Also, file transfer from the E5071C to the external controller can be
possible by reading data from a file on the E5071C using the commands as
query and then writing them to the file on the controller.

Retrieving data from storage

To retrieve information for the storage that is built in the E5071C (usage,
property of file located in a specified directory), use the following
command;

:MMEM.:CAT?

Sample Program

See the Transferring Files.

1130

Communication with External Devices using 1/0 Port

Communication with External Devices (Handler 1/0)

Handler I/O Port Overview

I/0 Signal Pin Layout and Description
Inputting/Outputting Data

Preset states at power-on

Timing Chart

Electrical Characteristics

Programming

1131

E5071C

Handler 170 Port Overview

The E5071C handler I/O port provides four independent parallel ports for
data I/O associated with several control signal lines and the power line. All
signals operate in TTL logic.

The data I/O ports are configured with 2 pairs of 8 bit output port and 2
pairs of 4 bit bi-directional port. Also those ports can cooperate to provide
a maximum 16-bit-width output port or a maximum 8-bit-width input port.

The I/0 signals operate on the negative logic basis, which can be altered.
The control signal lines consist of various control output data, including
completion of measurement or control signal for handshaking.

1/0 ports and control signal lines

Port A 8bit

(CONTHANDA 500t ol

P-l:trt B &hit

‘CONTHANDB Output Onl

» PORT C STATUS

> PORT D STATUS
> WRITE STROBE

» QOUTPUT 1
» QUTPUT 2

EXTERNAL TRIGGER

> INDEX (Same Pin as B ¢ of Port B)

* FEADY FOR TRIGGER (Same Pin as Bit T of Port B)
» SWEEFP END

* PASS/FAIL

> FAEZFAIL WRITE ETROBE

> 5V 100k max

I B

E

S5IFledEe

Other topics about Communication with External Devices

1132

1/0 Signal Pin Layout and Description

Programming

The layout of the I/O signal pins on the handler interface connector and its
description are shown below.

e
m
-1

HIDDMAL THMNASL
P LD

£8 180

:
B

HE LE0

:
2

O LD
e LDl

)
o
s
&

L% L0

Y el
B LeDed

O LD

I LMD

l.l.ﬁle"

%,

\

-1
[
[
Lk

16917y 6y ogl4g g i2g g g i me W 7RG R g4 mig 2t
I I‘iI I I I I h!t?tﬁtﬁt#hﬁlﬂlml I I

=
=

EE0F 10265

W S37dY

FBOULS ALY || &S

FHOHLE TIVY 88vd!
M+
QNG <FINE ||| &

0 LE0dr
20 L0y
O L0
00 L0
£3 L0
£3 140

SNLYLS O L0d
SNLYLS 3 LaOd

-3 L’
00 L0

MIDDNL 0 ADYIN M0 18 L0

G Lud’

KICNY 0 98 L0

A slash (/) symbol preceding signal names means that they are negative
logic (active low).

Pin Signal Input/Output Description

number name

1 GND N/A Ground.

2 JINPUT1 Input When this port receives a negative
pulse, /OUTPUT1 and /OUTPUT2 are
changed to the Low level.

3 /OUTPUT1 Output Changes to the Low level when /INPUT1

receives a negative pulse. A command
can be available for altering the

1133

E5071C

Low/High level logic.

4 /OUTPUT2 Output Changes to the Low level when /INPUT1
receives a negative pulse.A command
can be available for altering the
Low/High level logic.

5 /PORT AO Output Bit 0 of port A (8 bit parallel output port)

6 /PORT Al Output Bit 1 of port A.

7 /PORT A2 Output Bit 2 of port A.

8 /PORT A3 Output Bit 3 of port A.

9 /PORT A4 Output Bit 4 of port A.

10 /PORT A5 Output Bit 5 of port A.

11 /PORT A6 Output Bit 6 of port A.

12 /PORT A7 Output Bit 7 of port A.

13 /PORT BO Output Bit 0 of port B (8 bit parallel output port)

14 /PORT B1 Output Bit 1 of port B.

15 /PORT B2 Output Bit 2 of port B.

16 /PORT B3 Output Bit 3 of port B.

17 /PORT B4 Output Bit 4 of port B.

18 /EXTERNAL Input An external trigger signal. When the

TRIGGER trigger source is set to the "External,"
this port generates a trigger in respond
to the trailing edge of a negative pulse.

19 /PORT B5 Output Bit 5 of port B.

20 /PORT B6 Output Bit 6 of port B.

/INDEX Indicates that analog measurement is

complete. The /INDEX signal changes to
the Low level when analog measurement
(all sweeps of all channels) is complete.
When the handler receives the signal, it
assumes that it is ready to connect the
next DUT. However, no measurement
data are available until data calculation
is completed.

When the point trigger function is on, it

1134

Programming

goes to the High level before staring
measurement of the first measurement
point and returns to the Low level after
completing measurement of all
measurement points.

21 /PORT B7 Output Bit 7 of port B.
/READY Indicates that the instrument is ready
FOR for triggering.This signal is changed to
TRIGGER the Low level when the instrument is
ready for receiving a trigger signal.
With the point trigger function on, it
goes to the Low level when the
instrument is ready to accept the trigger
signal for the first point and goes to the
High level when the trigger signal for the
first point is received. When
measurement of all measurement points
is completed and the instrument is ready
to receive the trigger signal for the first
point of the next sweep, this signal goes
to the Low level again.
22 /PORT CO Input/Output Bit 0 of port C (4 bit parallel I/O port)
23 /PORT C1 Input/Output Bit 1 of port C.
24 /PORT C2 Input/Output Bit 2 of port C.
25 /PORT C3 Input/Output Bit 3 of port C.
26 /PORT DO Input/Output Bit 0 of port D (4 bit parallel I/O port)
27 /PORT D1 Input/Output Bit 1 of port D.
28 /PORT D2 Input/Output Bit 2 of port D.
29 /PORT D3 Input/Output Bit 3 of port D.
30 PORT C Output Port C status signal.This signal is
STATUS changed to the High level when the port
C is configured to output port. It is
changed to the Low level when the port
is configured to input port.
31 PORT D Output Port D status signal. This signal is
STATUS changed to the High level when the port

D is configured to output port. It is
changed to the Low level when the port
is configured to input port.

1135

E5071C

32

/WRITE
STROBE

Output

A output port write strobe signal. When
data is present (that is, output level
changes) on any of the output ports, this
signal provides a negative pulse.

33

/PASS FAIL

Output

Each limit test's results signal. This
signal changes to the High level when
limit test, bandwidth test, or ripple test
results return FAIL. It changes to the
Low level when all limit test results
return PASS.

34

/SWEEP
END

Output

A sweep completion signal. When
measurement (all sweeps of all
channels) and data calculation are
completed, this signal provides a
negative pulse.

35

+5V

Output

Provides +5V DC power supply for
external instruments.

36

/PASS FAIL
STROBE

Output

Each limit test's results write a strobe
signal. When limit test result is present
on /PASS FAIL, this signal provides a
negative pulse.

Other topics about Communication with External Devices

1136

Inputting/Outputting Data

Overview

Specifying Signal Direction of Port

Reading Data Input from Port

Data Output to Port

Sample Program

Programming

Other topics about Communication with External Devices

Overview

The E5071C handler I/0O port provides the ports for data I/O shown below.

Port
Na Usage Data Structure
me
P AT |AB| A5 | A4 | A3 A2 | A1 | AD
ort :
A Output
8 bils
BY |BG | BF | E4|B2 BZ|B1|BOD
Port
B Output
8 bits
Port Input/Out cajez|cr|co
C ut -
P 4 bits
Port Input/Out D3|D2jo1 | Do
D put 4 bits
D3|D2| D1 |00 |C3| C2|C1 | CO
Port Input/Out :
E t :
Py 8 bits

1137

E5071C

BY |BG| B B4| B3 |B2|B1|BO|AT|AS AS| A4 | AJ

Port

Output
18 bits

Specifying Signal Direction of Port

Signal direction (input/output) can be changed for the ports C, D, and D as
shown in I/O ports and control signal lines. Thus, before the ports are
used, the directions should be determined according to their usage.

To specify the signal direction for the ports C and D, use the following
command. Direction for the port E depends on the setting for the ports C
and D.

Port Name Command

Port C :CONT:HAND:C:MODE

Port D :CONT:HAND:D:MODE

Reading Data Input into Port

When the ports C, D, or E is configured to input ports, binary data
represented with High(0)/Low(1) of each bit of the port will be read as
decimal data.

To retrieve the data, use the following command as query:

Port Name Command

Port C :CONT:HAND:C
Port D :CONT:HAND:D
Port E :CONT:HAND:E

Data Output to Port

To the ports A through F (the ports C, D, and E should be configured to
output ports), binary data (decimal data when output data is specified with
a command) represented with High(0)/Low(1) of each bit of the port can
be output.

To output data, use the following command:

Port Name Command

1138

Programming

Port A :CONT:HAND:A
Port B :CONT:HAND:B
Port C :CONT:HAND:C
Port D :CONT:HAND:D
Port E :CONT:HAND:E
Port F :CONT:HAND:F

o The bit 6 of the data output by :CONT:HAND:B (the bit 14 of the
data output by :CONT:HAND:F) is ignored when outputting the
/INDEX signal is turned on.

o The bit 7 of the data output by :CONT:HAND:B (the bit 15 of the
data output by :CONT:HAND:F command) is ignored when
outputting the /READY FOR TRIGGER signal is turned on.

Sample Program

See Handler Interface.

1139

E5071C

Preset states at power-on
The handler I/O port is set at power-on as follows (not affected at reset)

Description Status

Port A High (All Bits)
Port B High (All Bits)
Port C Input

Port D Input

Port C STATUS Low

Port D STATUS Low

JOUTPUT1 High

JOUTPUT?2 High

/SWEEP END High

/PASS FAIL High

Other topics about Communication with External Devices

1140

Timing Chart
e Overview

e Timing Chart of I/O Port Signal

o« Timing Chart of Data Output and Write Strobe Signal

Programming

e« Timing Chart of Limit Test Result Output and Write Strobe Signal

o Timing Chart of /INPUT1 and /OUTPUT1, /OUTPUT2

Other topics about Communication with External Devices

Overview

This section shows the typical timing chart of I/O port Signal.

Timing chart of 1/0 Port Signal (Point trigger function: off)

s <
[EXTERMNAL - ;
TRIGGER U '

i
i
I
T
I
I
1
I
I
|

ANDEX f

FEWEEP END

READY FOR f
TRIGGER

b ed0E

\

Minimum Typical Maximum
value Value value
T1 Pulse width of 1 s - -
/EXTERNAL TRIGGER
T2 Pulse width of 10 ps 12 ys -
/SWEEP END

1141

E5071C

Timing Chart of 1/0 Port Signal (Point trigger function:on, Low-latency external trigger mode: on)

L 1 sweeen |
-

I 1 1

T3 1 T2
¥ e

L

WEeNT VO
ANDEX f - ‘a‘

i i -

-

FSWEEP " -
END K !
by
READY FOR / wh \
TRIGGER
=0T e

When both the point trigger function and the low-latency external trigger
mode are on, the /EXTERNAL TRIGGER signal must be inputted for each
measurement point during a single sweep. The /INDEX signal goes to the
High level before staring measurement of the first measurement point and
returns to the Low level after the completing measurement of all
measurement points.

The /READY FOR TRIGGER signal goes to the Low level when the
instrument is ready to accept the trigger signal for the first point and then
goes to the High level when the trigger signal for the first point is received.

When measurement of all measurement points is completed and the
instrument is ready to receive the trigger signal for the first point of the
next sweep, this signal goes to the Low level again.

When the point trigger function is on and the low-latency external trigger
mode is off, the /READY FOR TRIGGER signal goes High each time a trigger
signal is received and goes Low when measurement of each measurement
point is completed and the instrument is ready to accept a trigger for the
next measurement point.

1142

Programming

The times of T1 and T2 are the same as those when the point trigger
function is off. For more information, see Timing chart of I/O Port
Signal(Point trigger function:off).

Timing Chart of Data Output and Write Strobe Signal

PortAto F x B

Vuite Sirobe _j Y

eH0T 10356

T1 Response time of write strobe signal 1 s

T2 Pulse width of write strobe signal 1 s
Timing Chart of Limit Test Result Output and Write Strobe Signal

« rm m

/PASS FAIL x | .
PASE FAIL !)
WRITE STROBE %

e 03T

T1 Response time of /PASS FAIL write strobe 1 s

T2 Pulse width of /PASS FAIL write strobe 1 s

1143

E5071C

« When the average trigger function is activated, the fail and
write strobe signals are output at the time that the average test
result shows "failed" on a certain channel.

Timing Chart of INPUT1 and /OUTPUT1, /OUTPUT2

ANPUT1 ﬁ ¥
[OUTPUT1, IOUTPUTZ \

efT 10358
Minimum Maximum
value value
T1 Pulse width of /INPUT1 1 s -
T2 Response time of /OUTPUT1, 0.4 us 0.6 us
/OUTPUT?2

1144

Programming

Electrical Characteristics

e Input Signal

e Output Signal
e Power Supply (+5 V)

Other topics about Communication with External Devices
Input Signal

All input signals are TTL compatible.

Maximum rate input voltage -0.5Vto55V

High level 2.0Vto50V

Input voltage
Low level OVto0.5V

+OV +Hv

A 10k Q

=< —ANYy . To Handler 1Q Port

1.1k €& (Port C & Port D)
Y 1k € (Al Porls except C & D}

v GHD

eR0T 13T

Output Signal
All output signals are TTL compatible.

Maximum rate output -10 mA to 10 mA
current
:—|Igh| -5 mA
Output eve
current
Low 3 mA
level

1145

E5071C

2.0 V to 3.3 V (when output current is from

High -5 mA to 0 mA)

level 3.20 V (when output current is -1 mA)
Output 2.75 V (when output current is -5 mA)
voltage 0 V to 0.8 V (when output current is from 0

Low mA to 3 mA)

level 0.25 V (when output current is 1 mA)

0.55 V (when output current is 3 mA)

p

e30F 16371

Power Supply (+5 V)

100 Q
Af\fpm—— Tz Handller 1FQ Port

The following table shows electrical characteristics of +5 V power supply

for external instruments.

Output voltage

45Vto55V

Maximum output current

100 mA

1146

Programming

Status Reporting System
Status Reporting System

o General Status Register Model
o Using the Status Reporting System
o Status Register Structure

1147

E5071C

General Status Register Model
o Overview
o Event Register

e Enable Reqister

o Status Byte Register

o« Condition Register and Transition Filter

Other topics about Status Reporting System

Overview

The Agilent E5071C has a status reporting system to report the condition
of the instrument.

General status register model

SRQ

et “'*'{;;1%-__. Servics Request

1‘ 1 T —f—L————— Enable Registar

T T Sfatus byte Register

o N {read only
Enable Register

A A I I
Event Regisier (Read Only)

eB0T 1470

The status reporting system has a hierarchical structure as shown in the
figure above. When the instrument satisfies a particular condition, the
corresponding bit of the event register is set to 1. Therefore, you can
check the instrument status by reading the event register.

When the event register bit is set to "1" and a corresponding enable
register bit (a bit marked with an arrow in General status register model) is
also "1," the summary bit of the status byte register is set to "1." You can
read the status byte register by using the serial poll.

1148

Programming

If the bit of the service request enable register is "1," a service request
(SRQ) is generated by the positive transition of the corresponding status
byte register bit. By generating SRQ, you can notify the controller that the
E5071C is requesting service. In other words, interruption by SRQ can be
programmed. For more information on using SRQ, see Using the status
register or Using the status reporting system.

Event Register

Reflects the corresponding condition of the E5071C (e.g., occurrence of an
event) as a bit status. These bits continuously monitor changes in the
E5071C's state and change the bit status when the condition (e.g., change
bit status to "1" if a specific event occurs) for each bit is met. You cannot
change the bit status by issuing a SCPI command.

Enable Register

Setting the enable register allows you to specify event register bits that
can set "1" to the summary bit of the status byte register when an event
occurs. The register bits work as mask bits; setting "1" to an enable
register will enable a corresponding bit in the event register.

For example, when you want to set "1" as the summary bit in the status
byte register by a specific register condition, set the corresponding enable
register to "1."

Status Byte Register

If the enabled event register is set to "1," a corresponding bit of the status
byte register is also set to "1." This register also indicates the output
queue and SRQ status.

The value of the status byte register can be read by using the *STB?
command or serial poll (SPOLL statement in HTBasic) from the controller.

Reading the status byte register by using the *STB? command does not
affect the contents of the status byte register. However, reading it with the
SPOLL statement of HTBasic will clear the RQS bit in the status byte
register.

Also, setting the service request enable register using the *SRE command
can generate a service request synchronously with the status byte register.

Condition Register and Transition Filter

When the status register has a transition filter, there is a lower register
called a condition register under the event register. The transition filter is
between the event register and the condition register.

The transition filter enables you to select a positive and/or negative
transition of the condition register bit in order to set a bit in the
corresponding event register. For example, using the negative transition
filter to set bit 3 to "1" causes bit 3 of the event register to be set to "1"

1149

E5071C

when bit 3 of the condition register makes a negative transition, that is,
changes from 1 to 0.

Transition filter and condition register

Eimable Registe:
| O
Event Register
[[] 1] .3 [K
LLn] L] T] T b Postive Transtion Filter
i_"' T T T T T T T T Megative Tiansition Filter
Conditien Register
Eodape s

In the E5071C, the following registers provide a condition register and
transition filter:

1150

Operation status register

Questionable status register

Questionable limit status register

Questionable limit extra status register

Questionable limit channel {1-16} status register
Questionable limit channel {1-16} extra status register
Questionable bandwidth limit status register

Questionable bandwidth limit extra status register
Questionable bandwidth limit channel {1-16} status register
Questionable bandwidth limit channel {1-16} extra status register
Questionable ripple limit status register

Questionable ripple limit extra status register

Questionable ripple limit channel {1-16} status register
Questionable ripple limit channel {1-16} extra status register

Programming

Using the Status Reporting System

You can manage the status report system using the following commands in
any combination:

e *CLS

e *SRE

e *STB?

e *ESE

e *ESR?

e« STAT:PRES

e STAT:OPER:ENAB

e« STAT:OPER:COND?

e :STAT:OPER?

e STAT.OPER:PTR

e STAT:OPER:NTR

e STAT:QUES:ENAB

e STAT:QUES:COND?

e STAT:QUES?

e STAT:QUES:PTR

e STAT:QUES:NTR

e« STAT:QUES:LIM:ENAB

e STAT:QUES:LIM:COND?

e STAT:QUES:LIM?

e STAT:QUES.LIM:PTR

e STAT:QUES:LIM:NTR

e STAT:QUES:LIM:ELIM:ENAB

e STAT:QUES:LIM:ELIM:COND?

e STAT:QUES:LIM:ELIM?

e STAT:QUES:LIM:ELIM:PTR

e STAT:QUES:LIM:ELIM:NTR

e STAT:QUES:LIM:CHAN{1-16}.ENAB
e STAT:QUES:LIM:CHAN{1-16}.COND?
e STAT:QUES:LIM:CHAN{1-16}?

e STAT:QUES:LIM:CHAN{1-16}:PTR
e STAT:QUES:LIM:CHAN{1-16}:NTR

1151

E5071C

e STAT:QUES:LIM:CHAN{1-16}:ECH:ENAB
e STAT:QUES:LIM:CHAN{1-16}:ECH:COND?
e STAT:QUES:LIM:CHAN{1-16}:ECH?

o STAT:QUES:LIM:CHAN{1-16}:ECH:PTR

e STAT:QUES:LIM:CHAN{1-16}:ECH:NTR
e STAT:QUES:BLIM:ENAB

o STAT:QUES:BLIM:COND?

e STAT:QUES:BLIM?

e STAT:QUES:BLIM:PTR

o STAT:QUES:BLIM:NTR

o STAT:QUES:BLIM:ELIM:ENAB

e STAT:QUES:BLIM:ELIM:COND?

o STAT:QUES:BLIM:ELIM?

e STAT:QUES:BLIM:ELIM:PTR

e STAT:QUES:BLIM:ELIM:NTR

o :STAT:QUES:BLIM:CHAN{1-16}:ENAB

e STAT:QUES:BLIM:CHAN{1-16}:COND?

e STAT:QUES:BLIM:CHAN{1-16}?

e STAT:QUES:BLIM:CHAN{1-16}:PTR

e STAT:QUES:BLIM:CHAN{1-16}:NTR

o STAT:QUES:BLIM:CHAN{1-16}:ECH:ENAB
o :STAT:QUES:BLIM:CHAN{1-16}:ECH:COND?
e STAT:QUES:BLIM:CHAN{1-16}:ECH?

e STAT:QUES:BLIM:CHAN{1-16}:ECH:PTR
e STAT:QUES:BLIM:CHAN{1-16}:ECH:NTR
o STAT:QUES:RLIM:ENAB

e STAT:QUES:RLIM:COND?

e STAT:QUES:RLIM?

e STAT:QUES:RLIM:PTR

e STAT:QUES:RLIM:NTR

e STAT:QUES:RLIM:ELIM:ENAB

e STAT:QUES:RLIM:ELIM:COND?

e STAT:QUES:RLIM:ELIM?

e STAT:QUES:RLIM:ELIM:PTR

1152

:STAT:QUES:RLIM:ELIM:NTR
:STAT:QUES:RLIM:CHAN{1-16}:ENAB
:STAT:QUES:RLIM:CHAN{1-16}:COND?
:STAT:QUES:RLIM:CHAN{1-16}?
:STAT:QUES:RLIM:CHAN{1-16}:PTR
:STAT:QUES:RLIM:CHAN{1-16}:NTR
:STAT:QUES:RLIM:CHAN{1-16}:ECH:ENAB
:STAT:QUES:RLIM:CHAN{1-16}:ECH:COND?
:STAT:QUES:RLIM:CHAN{1-16}:ECH?
:STAT:QUES:RLIM:CHAN{1-16}:ECH:PTR
:STAT:QUES:RLIM:CHAN{1-16}:ECH:NTR

Programming

Other topics about Status Reporting System

1153

E5071C

Status Register Structure
Status Register Structure

1154

Status Register

Status Register for Limit Test (Channel)

Status Register for Limit Test (Trace) (1 of 2)
Status Register for Limit Test (Trace) (2 of 2)
Status Register for Bandwidth Limit (Channel)
Status Register for Bandwidth Limit (Trace) (1 of 2)
Status Register for Bandwidth Limit (Trace) (2 of 2)
Status Register for Ripple Limit (Channel)

Status Register for Ripple Limit (Trace) (1 of 2)
Status Register for Ripple Limit (Trace) (2 of 2)

« Although up to 36 channel is available on E5071C, the registers
for limit test and Ripple/Bandwidth limit tests are for up to 16
channel.

Status Register

fr Ts

ts T+ ts t2 T4

f WHIEW 1
L

FWI

i e

Programming

west Mokl Regfster
Fly e s
A, | FETET]
afa'us Byle Fegisler

= (SPELL)

makls ReaiEiEr

2k WIW Ty Feplter

wﬁm Bwent Register

w 1 Sfaius hable Redshe

BRI ANAR

o e e e

e e e, G INLOPER PR
alenstar _;_.;]:..! tive Transiban Flkr

St

) mmwm Regita

mmmm Glafue Svek Regisar

%%ﬁxlﬂbh Regsla

Le=1n

apEn
'F:.T:'" THIT :

R

220710220

Status Bit Definitions of Status Byte Register

%ﬂ%ﬁmnﬂm Fegaiar

Bit

Name

Description

1155

E5071C

Position
0,1 Not used Always 0
2 Error/Event Queue Set to "1" if the error/event queue contains data;
reset to "0" when all the data has been retrieved.
3 Questionable Set to "1" when one of the enabled bits in the
Status Register questionable status register is set to "1."
Summary
4 MAV (Message Set to "1" when the output queue contains data;
Available) reset to "0" when all the data has been retrieved.
5 Standard Event Set to "1" when one of the enabled bits in the
Status Register standard event status register is set to "1."
Summary
6 RQS Set to "1" when any of the status byte register bits
enabled by the service request enable register is
set to "1"; reset to "0" when all the data has been
retrieved through serial polling.
7 Operation Status Set to "1" when one of the enabled bits in the

Register Summary

operational status register is set to "1."

Issuing the *CLS command will clear all bits from the status byte register.

Status Bit Definitions of Standard Event Status Register

Bit Name Description

Position

0 Operation Set to "1" upon completion of all operations done by
Complete commands that precede the *OPC command.

1 Not used Always 0

2 Query Error 1. Setto "1" when the E5071C receives a data output

request but there is no data to output.

2. Set to "1" when the data of the E5071C's output
queue has been cleared because of a hew message
received before the completion of data output.

1156

Programming

3 Instrument Set to "1" when an error has occurred and the error is
Dependent not a command, query, or execution error.
Error
4 Execution 1. Setto "1" when any parameter in an SCPI command
Error exceeds its input range or is inconsistent with the
E5071C's capabilities.
2. Set to "1" when an SCPI command cannot be
properly executed due to some condition of the E5071C.
5 Command 1. Setto "1" when an IEEE 488.2 syntax error occurs
Error (a command sent to the E5071C does not follow the
IEEE 488.2 syntax). Possible violations include the
command parameter violating the E5071C listening
formats or being unacceptable.
2. Set to "1" when a semantic error occurs. Possible
causes include a command containing misspellings
being sent to the E5071C or an IEEE 488.2 command
not supported by the E5071C being sent.
3. Set to "1" when GET (Group Execution Trigger) is
input while a program message is being received.
6 Not used Always 0
7 Power ON Set to "1" when the E5071C is powered ON, or when

the firmware is restarted.

Issuing the *CLS command will clear all bits from the standard event status

register.

Status Bit Definitions of the Operation Status Condition Register

Bit Name Description

Position

0-3 Not used Always 0

4 Measurement Set to "1" during measurement

5 Waiting for Trigger Set to "1" while the instrument is waiting for a
trigger.

6-13 Not used Always 0

1157

E5071C

14 VBA Macro Set to "1" while a VBA macro is running.
Running
15 Not used Always 0

Issuing the *CLS command will clear all bits from the operation status
event register.

Status Bit Definitions of the Questionable Status Condition Register

Bit Name Description

Position

0-7 Not used Always 0

8 Bandwidth Test Fail Set to "1" while one of the enabled bits
(Questionable bandwidth limit in the questionable bandwidth limit
status register summary) status event register is set to "1."

9 Ripple Test Fail (Questionable Set to "1" while one of the enabled bits
ripple limit status register in the questionable ripple limit status
summary) event register is set to "1."

10 Limit Test Fail (Questionable Set to "1" while one of the enabled bits
limit status register summary) in the questionable limit status event

register is set to "1."
11 -15 Not used Always 0

Status Bit Definitions of the Questionable Status Event Register

Bit Name Description

Position

0-7 Not used Always 0

8 Bandwidth Test Set to "1" when a transition of the condition register
Fail occurs if the transition filters are set as valid values.

(Questionable
bandwidth limit
status register
summary)

9 Ripple Test Fail Set to "1" when a transition of the condition register
(Questionable occurs if the transition filters are set as valid values.
ripple limit
status register
summary)

10 Limit Test Fail Set to "1" when a transition of the condition register

1158

(Questionable

Programming

occurs if the transition filters are set as valid values.

limit status
register
summary)
11 VBA Macro Set to "1" when a VBA macro is interrupted by one
Interrupted of the following reasons.
Occurrence of an execution error
Executing "End" statement in the VBA Macro
Executing :PROG:STAT STOP
Operating CTRL + Break using the keyboard
Operating Marcro Break or Macro Setup > Stop using
the front panel
12 - 15 Not used Always 0

Issuing the *CLS command will clear all bits from the questionable status
event register.

1159

E5071C

Status Register for Limit Test (channel)

% invif Btahs Euent Regishn
) Wmmﬁﬁg Enskile Reglivr

TIE« T'H T'1I:I 1 T'1| T'1I2I f'&‘ fl:l

= CFTET LR LI PR
FrRiFe Bepnsien MiEr

L Weaative Tansitien F ke
i [O TATLIL R S oL I TR

e

IR VTS, ohwanel Status Event Register
% *anﬁgnl St Engbi Reghter

Te Te Ts 1 .;’Lh_h

Tes 118 Tiz Tz Tu

u
b b T TOUERLIMELRER TR
esfrnsnantenshandenat OTOIE THRNEERN FHleT

rerkesfenkenienet e Mianeiin Fkas
@ﬁ'mmnmmm

e

Limik Exfam Channel Comndi
ﬁ%ﬂm%mnm Ry s EondiEon Regkier

ebi71e22

Status Bit Definitions of the Questionable Limit Status Condition
Register

Bit Name Description

Position

0 Channel 15, 16 Limit Test Set to "1" while one of the enabled
summary (questionable limit bits in the questionable limit extra
extra status register summary) status event register is set to "1."

1 Channel 1 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 1 bits in the questionable limit channel
status register summary) 1 status event register is set to "1."

1160

Programming

2 Channel 2 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 2 bits in the questionable limit channel
status register summary) 2 status event register is set to "1."
3 Channel 3 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 3 bits in the questionable limit channel
status register summary) 3 status event register is set to "1."
4 Channel 4 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 4 bits in the questionable limit channel
status register summary) 4 status event register is set to "1."
5 Channel 5 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 5 bits in the questionable limit channel
status register summary) 5 status event register is set to "1."
6 Channel 6 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 6 bits in the questionable limit channel
status register summary) 6 status event register is set to "1."
7 Channel 7 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 7 bits in the questionable limit channel
status register summary) 7 status event register is set to "1."
8 Channel 8 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 8 bits in the questionable limit channel
status register summary) 8 status event register is set to "1."
9 Channel 9 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 9 bits in the questionable limit channel
status register summary) 9 status event register is set to "1."
10 Channel 10 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 10 bits in the questionable limit channel
status register summary) 10 status event register is set to "1."
11 Channel 11 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 11 bits in the questionable limit channel
status register summary) 11 status event register is set to "1."
12 Channel 12 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 12 bits in the questionable limit channel
status register summary) 12 status event register is set to "1."
13 Channel 13 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 13 bits in the questionable limit channel
status register summary) 13 status event register is set to "1."
14 Channel 14 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 14 bits in the questionable limit channel
status register summary) 14 status event register is set to "1."
15 Not used Always 0

1161

E5071C

Issuing the *CLS command will clear all bits from the questionable limit
status event register.

Status Bit Definitions of the Questionable Limit Extra Status
Condition Register

Bit Name Description

Position

0 Not used Always 0

1 Channel 15 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 15 bits in the questionable limit channel
status register summary) 15 status event register is set to "1."

2 Channel 16 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 16 bits in the questionable limit channel
status register summary) 16 status event register is set to "1."

3-15 Not used Always 0

Issuing the *CLS command will clear all bits from the questionable limit
extra status event register.

1162

Programming

Status Register for Limit Test (Trace) (1 of 2)

LTI oo S e

Emesfanabie Lk Chemnell Status Esable Regiier
HHI'EIEB- L AT S0 R AR

I 7 —— |
Tis Tu Tﬂ fﬂ fan Tﬂ Te Te 7 *s Ts fa Ta fz Ti e

i)t IO U U NS [y - L L f L)) [__iPusitive Tiawdion Flee
i N N NS N A N S —— L
ity CTATE S EACT T BEFa

T

'[)
TRATRE T SR iy Fomton Regkter

— e e ! RSN EHAR g
JEI S S ...:hm*rmﬁml%m

.+ -= -:- I-?-I -
i - i - e -

%iﬁﬁﬁﬁﬁﬁﬁﬁlilﬁ

S el s Gt Rt

SELE] Distets

1163

E5071C

Status Bit Definitions of the Questionable Limit Channel {1-16%}
Status Condition Register

Bit Name Description
Position
0 Trace 15, 16 Limit Test Set to "1" while one of the enabled
summary (questionable limit bits in the questionable limit channel
channel {1-16} extra status {1-16} extra status event register is
register summary) set to "1."
1 Trace 1 Limit Test Fail Set to "0" when a measurement cycle
begins;
set to "1" when the measurement
cycle finishes and returns "fail" as the
limit test result for trace 1.
2 Trace 2 Limit Test Fail Set to "0" when a measurement cycle
begins;
set to "1" when the measurement
cycle finishes and returns "fail" as the
limit test result for trace 2.
3 Trace 3 Limit Test Fail Set to "0" when a measurement cycle
begins;
set to "1" when the measurement
cycle finishes and returns "fail" as the
limit test result for trace 3.
4 Trace 4 Limit Test Fail Set to "0" when a measurement cycle
begins;
set to "1" when the measurement
cycle finishes and returns "fail" as the
limit test result for trace 4.
5 Trace 5 Limit Test Fail Set to "0" when a measurement cycle
begins;
set to "1" when the measurement
cycle finishes and returns "fail" as the
limit test result for trace 5.
6 Trace 6 Limit Test Fail Set to "0" when a measurement cycle
begins;
set to "1" when the measurement
cycle finishes and returns "fail" as the
limit test result for trace 6.
7 Trace 7 Limit Test Fail Set to "0" when a measurement cycle

begins;

set to "1" when the measurement
cycle finishes and returns "fail" as the
limit test result for trace 7.

1164

Programming

8 Trace 8 Limit Test Fail Set to "0" when a measurement cycle
begins;

set to "1" when the measurement
cycle finishes and returns "fail" as the
limit test result for trace 8.

9 Trace 9 Limit Test Fail Set to "0" when a measurement cycle
begins;

set to "1" when the measurement
cycle finishes and returns "fail" as the
limit test result for trace 9.

10 Trace 10 Limit Test Fail Set to "0" when a measurement cycle
begins;

set to "1" when the measurement
cycle finishes and returns "fail" as the
limit test result for trace 10.

11 Trace 11 Limit Test Fail Set to "0" when a measurement cycle
begins;

set to "1" when the measurement
cycle finishes and returns "fail" as the
limit test result for trace 11.

12 Trace 12 Limit Test Fail Set to "0" when a measurement cycle
begins;

set to "1" when the measurement
cycle finishes and returns "fail" as the
limit test result for trace 12.

13 Trace 13 Limit Test Fail Set to "0" when a measurement cycle
begins;

set to "1" when the measurement
cycle finishes and returns "fail" as the
limit test result for trace 13.

14 Trace 14 Limit Test Fail Set to "0" when a measurement cycle
begins;

set to "1" when the measurement
cycle finishes and returns "fail" as the
limit test result for trace 14.

15 Not used Always 0

Issuing the *CLS command will clear all the bits in the questionable limit
channel {1-16} status event register.

Status Bit Definitions of the Questionable Limit Channel {1-16%}
Extra Status Condition Register

1165

E5071C

Bit Name Description
Position
0 Not used Always 0
1 Trace 15 Limit Set to "0" when a measurement cycle begins;
Test Fail set to "1" when the measurement cycle finishes and

returns "fail" as the limit test result for trace 15.

2 Trace 16 Limit Set to "0" when a measurement cycle begins;
Test Fail set to "1" when the measurement cycle finishes and
returns "fail" as the limit test result for trace 16.

3-15 Not used Always 0

Issuing the *CLS command will clear all the bits in the questionable limit
channel {1-16} extra status event register.

Although up to 36 channel is available on E5071C,
the register for limit test is for up to 16 channel.

1166

Programming

Status Register for Limit Test (Trace) (2 of 2)

.;- _:-' frie) _:- Wm Suheg Leont mm

L f e .
'M'A_ﬂl_ﬂﬂm_m_ﬂl_ﬂ_ﬂ_ﬂ g ﬁjﬁ—r

mesbicr g Ll Chamme il Beiia Tracs Sates Congiipe Spoesker
5 | RN 1 RS T Py

ﬁiﬁﬁﬂiﬁﬁﬁl Freaiski
5 Bl Rodabos

Fer ‘ R S S———— | T ——— WL L R
R R R R

A A - . ! e
| cicils
o :: R e & 2 1

ORI Sy e St ey

ﬁgﬁibﬂaﬂq Linif Channgls Bxtia Tippe Giain. Seenk Regsin
ETATEE RS IR A T BT
T Fhniary Hirabls Reghster

(e

i
b’
;
T

e

| SR -

L SR -

AR WORE SEE AU hm Wl B eR g B W & 2 4 2 1

ST 1eZZ

Status Bit Definitions of the Questionable Limit Extra Status
Condition Register

Bit Name Description
Position

1167

E5071C

0 Not used Always 0

1 Channel 15 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 15 bits in the questionable limit channel
status register summary) 15 status event register is set to "1."

2 Channel 16 Limit Test Fail Set to "1" while one of the enabled
(questionable limit channel 16 bits in the questionable limit channel
status register summary) 16 status event register is set to "1."

3-15 Not used Always 0

Issuing the *CLS command will clear all bits from the questionable limit
extra status event register.

1168

Programming

Status Register for Bandwidth Limit (Channel)

% mMiLlﬂ Elialues, Bl Bopister

i T . . S (1 N O O T O T O I I"Iiiﬁe"l’lllﬁlilllf‘lil

R e —_— =t — - — - — - —_-———— -

oot Kt § v 1 = 1 | 8 & ¥ __i_ 2 i p i3 E) = § £ ¥ _°= 1 g

er TiansHon Flier
= i ?""‘E ﬁ" UL IR

%Wﬂl Liumih Exha Clwanng] Balns Geend Regisin

l;&iﬁnﬂ i er-mm Channgl Flas Eeb Reg

AR TR
iew Tiansken Fia

T wg=i o m Fillga

ST EN R

TR W OGN O MG ¥R M K O OB & 1% E;i;! 1

m%ﬂh in Lymil WIFW-HMFWIEPIW

e TR Lt

Status Bit Definitions of the Questionable Bandwidth Limit Channel
{1-16} Status Condition Register

Bit Name Description
Position
0 Trace 15, 16 Bandwidth Test Set to "1" while one of the enabled
summary (questionable bits in the questionable bandwidth
bandwidth limit channel {1-16} limit channel {1-16} extra status
extra status register summary) event register is set to "1."
1 Trace 1 Bandwidth Test Fail Set to "0" when a measurement
cycle begins;
set to "1" when the measurement
cycle finishes and returns "fail" as

1169

E5071C

the bandwidth test result for trace 1.

Trace 2 Bandwidth Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the bandwidth test result for trace 2.

Trace 3 Bandwidth Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the bandwidth test result for trace 3.

Trace 4 Bandwidth Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the bandwidth test result for trace 4.

Trace 5 Bandwidth Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the bandwidth test result for trace 5.

Trace 6 Bandwidth Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the bandwidth test result for trace 6.

Trace 7 Bandwidth Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the bandwidth test result for trace 7.

Trace 8 Bandwidth Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the bandwidth test result for trace 8.

Trace 9 Bandwidth Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the bandwidth test result for trace 9.

10

Trace 10 Bandwidth Test Fail

Set to "0" when a measurement
cycle begins;
set to "1" when the measurement

1170

Programming

cycle finishes and returns "fail" as
the bandwidth test result for trace
10.

11 Trace 11 Bandwidth Test Fail Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the bandwidth test result for trace
11,

12 Trace 12 Bandwidth Test Fail Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the bandwidth test result for trace
12.

13 Trace 13 Bandwidth Test Fail Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the bandwidth test result for trace
13.

14 Trace 14 Bandwidth Test Fail Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the bandwidth test result for trace
14,

15 Not used Always 0

Issuing the *CLS command will clear all the bits in the questionable
bandwidth limit channel {1-16} status event register.

Status Bit Definitions of the Questionable Bandwidth Limit Channel
{1-16} Extra Status Condition Register

Bit Name Description
Position
0 Not used Always 0
1 Trace 15 Set to "0" when a measurement cycle begins;
Bandwidth Test set to "1" when the measurement cycle finishes and
Fail returns "fail" as the bandwidth test result for trace
15.
2 Trace 16 Set to "0" when a measurement cycle begins;
Bandwidth Test set to "1" when the measurement cycle finishes and
returns "fail" as the bandwidth test result for trace

1171

E5071C

Fail 16.

3-15 Not used Always 0

Issuing the *CLS command will clear all the bits in the questionable
bandwidth limit channel {1-16} extra status event register.

1172

Programming

Status Register for Bandwidth Limit (Trace) 1

Fmesfionaiyy, Beachad e Limk Chawngell Sialns, Bt Register
i STATCUESBLIL-CHAN TS
Cimeslonabin Bamdsddih Lok Chaansll Staus Babbs [Zoia bt
SERECESIBLIL-CHANT ENAS]

Tis Taa 1'13 5 fn _Jw Ta T& f7 "6 Ts Fa Ta T? Ta Ta

P CMES BN CHEREETRY
i _L- JL_I._ i -.-'.] I 1 i i i .'.., L) | iPusitiva Trawsilion Sl
1 Blepafive Transibon Fiees

HTM&T& ‘hﬂuﬂ Tnen-'ﬂ rage @ irace ran? ra;ru& rage 3 rauud 'Eluu3 raml2 b S IS B CHSR LR
FTEE WIEL EISE 08 Eﬁ-ﬂ- m 1 255- 123- 'B!- 1

()
W ﬂmu m&gmm Stitus Sandiion Registes

Ermestion o Do wded 5 L Chonne i Stolus, Deond Regisko
L] im:bt&h iifda mﬁfmm Euadlle Begi
El.ﬂgwm BT A e g

Yis §ae T1a "I‘-u For Toa To Te Tr %6 15 fa Jo Tz T1 7o

- ESTRLES B SRR
| Pasitice Tipnsison ERov

"H‘dalﬂiw Trpsetam

i ST B SRR

T
1T
T

)

o) -?I- I IFI ¥ q'- -I (11 v II (1 I ¥ I?- II?- II?.I -? T I-r- -? EETEE Y m‘mﬁnmtw

ety srmduankishahidedabn bkt did ke ta st s oo i Trowsllion Folar
o o - L e T gt Trmaltion iy
. .:- .I Trﬂ -.-. -. .::J.. w—ma!mr'*
| m AR ALY
A ERF g F A]] |
e
i Linit Chanwiel 16 Siblus Condéio Regkiter
PRl N Rk
R le22y

Status Bit Definitions of the Questionable Bandwidth Limit Status
Condition Register

1173

E5071C

Bit Name Description

Position

0 Channel 15, 16 Bandwidth test Set to "1" while one of the enabled
summary (questionable bits in the questionable bandwidth
bandwidth limit extra status limit extra status event register is
register summary) setto "1."

1 Channel 1 Bandwidth Test Fail Set to "1" while one of the enabled
(questionable bandwidth limit bits in the questionable bandwidth
channel 1 status register limit channel 1 status event register
summary) is set to "1."

2 Channel 2 Bandwidth Test Fail Set to "1" while one of the enabled
(questionable bandwidth limit bits in the questionable bandwidth
channel 2 status register limit channel 2 status event register
summary) is setto "1."

3 Channel 3 Bandwidth Test Fail Set to "1" while one of the enabled
(questionable bandwidth limit bits in the questionable bandwidth
channel 3 status register limit channel 3 status event register
summary) is set to "1."

4 Channel 4 Bandwidth Test Fail Set to "1" while one of the enabled
(questionable bandwidth limit bits in the questionable bandwidth
channel 4 status register limit channel 4 status event register
summary) is setto "1."

5 Channel 5 Bandwidth Test Fail Set to "1" while one of the enabled
(questionable bandwidth limit bits in the questionable bandwidth
channel 5 status register limit channel 5 status event register
summary) is setto "1."

6 Channel 6 Bandwidth Test Fail Set to "1" while one of the enabled
(questionable bandwidth limit bits in the questionable bandwidth
channel 6 status register limit channel 6 status event register
summary) is setto "1."

7 Channel 7 Bandwidth Test Fail Set to "1" while one of the enabled
(questionable bandwidth limit bits in the questionable bandwidth
channel 7 status register limit channel 7 status event register
summary) is set to "1."

8 Channel 8 Bandwidth Test Fail Set to "1" while one of the enabled
(questionable bandwidth limit bits in the questionable bandwidth
channel 8 status register limit channel 8 status event register
summary) is setto "1."

9 Channel 9 Bandwidth Test Fail Set to "1" while one of the enabled

(questionable bandwidth limit
channel 9 status register
summary)

bits in the questionable bandwidth
limit channel 9 status event register
is set to "1."

1174

Programming

10 Channel 10 Bandwidth Test Fail Set to "1" while one of the enabled
(questionable bandwidth limit bits in the questionable bandwidth
channel 10 status register limit channel 10 status event
summary) register is set to "1."

11 Channel 11 Bandwidth Test Fail Set to "1" while one of the enabled
(questionable bandwidth limit bits in the questionable bandwidth
channel 11 status register limit channel 11 status event
summary) register is set to "1."

12 Channel 12 Bandwidth Test Fail Set to "1" while one of the enabled
(questionable bandwidth limit bits in the questionable bandwidth
channel 12 status register limit channel 12 status event
summary) register is set to "1."

13 Channel 13 Bandwidth Test Fail Set to "1" while one of the enabled
(questionable bandwidth limit bits in the questionable bandwidth
channel 13 status register limit channel 13 status event
summary) register is set to "1."

14 Channel 14 Bandwidth Test Fail Set to "1" while one of the enabled
(questionable bandwidth limit bits in the questionable bandwidth
channel 14 status register limit channel 14 status event
summary) register is set to "1."

15 Not used Always 0

Issuing the *CLS command will clear all bits from the questionable

bandwidth limit status event register.

1175

E5071C

Status Register for Bandwidth Limit (Trace) 2

|. g P
e T e oy o et ﬁﬁﬂ;mmﬁ

R e — = s =auiT il

Jestpna e Bandedot i _imil Cloms W Syl Taes T seerkifogiizy
gﬂw e

N e []

i il

oo Tue

e = = = = — e
;;___'_:l_.: '__I_"'_I_' : EEE 1 mid 3 _I = l:_: & '__'.'_.__:. =
;._.___l__ __I 1 [l] |

i D]

Status Bit Definitions of the Questionable Bandwidth Limit Extra
Status Condition Register

Bit Name Description
Position

1176

Programming

0 Not used Always 0

1 Channel 15 Bandwidth Test Fail Set to "1" while one of the enabled
(questionable bandwidth limit bits in the questionable bandwidth
channel 15 status register limit channel 15 status event register
summary) is set to "1."

2 Channel 16 Bandwidth Test Fail Set to "1" while one of the enabled
(questionable bandwidth limit bits in the questionable bandwidth
channel 16 status register limit channel 16 status event register
summary) is set to "1."

3-15 Not used Always 0

Issuing the *CLS command will clear all bits from the questionable
bandwidth limit extra status event register.

1177

E5071C

Status Register for Ripple Limit (Channel)

S v e

) mﬁﬁmﬁmﬁ Chawnyl Salus Eepwl Fegibfer

K G e States Bl eogfotne

AR LR F IR
iew Tiansken Fia
_ 1. Toawsifpm Rilgs
i | PSR TR
o
E&L

CETGH WO P M NG OV OME IR O % O E W #;4;2 1

Limi¥ A inarms Elaies Crnpibion B
£ e

R le22d

Status Bit Definitions of the Questionable Ripple Limit Status
Condition Register

Bit Name Description

Position

0 Channel 15, 16 Ripple Test Set to "1" while one of the enabled bits
summary (questionable ripple in the questionable ripple limit extra
limit extra status register status event register is set to "1."
summary)

1 Channel 1 Ripple Test Fail Set to "1" while one of the enabled
(questionable ripple limit bits in the questionable ripple limit
channel 1 status register channel 1 status event register is set

1178

Programming

summary) to "1."

2 Channel 2 Ripple Test Fail Set to "1" while one of the enabled
(questionable ripple limit bits in the questionable ripple limit
channel 2 status register channel 2 status event register is set
summary) to"1."

3 Channel 3 Ripple Test Fail Set to "1" while one of the enabled
(questionable ripple limit bits in the questionable ripple limit
channel 3 status register channel 3 status event register is set
summary) to "1."

4 Channel 4 Ripple Test Fail Set to "1" while one of the enabled
(questionable ripple limit bits in the questionable ripple limit
channel 4 status register channel 4 status event register is set
summary) to"1."

5 Channel 5 Ripple Test Fail Set to "1" while one of the enabled
(questionable ripple limit bits in the questionable ripple limit
channel 5 status register channel 5 status event register is set
summary) to "1."

6 Channel 6 Ripple Test Fail Set to "1" while one of the enabled
(questionable ripple limit bits in the questionable ripple limit
channel 6 status register channel 6 status event register is set
summary) to"1."

7 Channel 7 Ripple Test Fail Set to "1" while one of the enabled
(questionable ripple limit bits in the questionable ripple limit
channel 7 status register channel 7 status event register is set
summary) to "1."

8 Channel 8 Ripple Test Fail Set to "1" while one of the enabled
(questionable ripple limit bits in the questionable ripple limit
channel 8 status register channel 8 status event register is set
summary) to"1."

9 Channel 9 Ripple Test Fail Set to "1" while one of the enabled
(questionable ripple limit bits in the questionable ripple limit
channel 9 status register channel 9 status event register is set
summary) to "1."

10 Channel 10 Ripple Test Fail Set to "1" while one of the enabled
(questionable ripple limit bits in the questionable ripple limit
channel 10 status register channel 10 status event register is
summary) set to "1."

11 Channel 11 Ripple Test Fail Set to "1" while one of the enabled
(questionable ripple limit bits in the questionable ripple limit
channel 11 status register channel 11 status event register is
summary) set to "1."

12 Channel 12 Ripple Test Fail Set to "1" while one of the enabled

1179

E5071C

(questionable ripple limit
channel 12 status register
summary)

bits in the questionable ripple limit
channel 12 status event register is
set to "1."

13 Channel 13 Ripple Test Fail Set to "1" while one of the enabled
(questionable ripple limit bits in the questionable ripple limit
channel 13 status register channel 13 status event register is
summary) set to "1."

14 Channel 14 Ripple Test Fail Set to "1" while one of the enabled
(questionable ripple limit bits in the questionable ripple limit
channel 14 status register channel 14 status event register is
summary) set to "1."

15 Not used Always 0

Issuing the *CLS command will clear all bits from the questionable ripple
limit status event register.

Status Bit Definitions of the Questionable Ripple Limit Extra Status
Condition Register

Bit Name Description

Position

0 Not used Always 0

1 Channel 15 Ripple Test Fail Set to "1" while one of the enabled
(questionable ripple limit bits in the questionable ripple limit
channel 15 status register channel 15 status event register is set
summary) to"1."

2 Channel 16 Ripple Test Fail Set to "1" while one of the enabled
(questionable ripple limit bits in the questionable ripple limit
channel 16 status register channel 16 status event register is set
summary) to "1."

3-15 Not used Always 0

Issuing the *CLS command will clear all bits from the questionable ripple
limit extra status event register.

1180

Programming

Status Register for Ripple Limit (Trace) (1 of 2)

atle Firple Limil Chenwdl Sialus Sant Regide
TR R GHAR1T)
e iy, Bl Lirmik Chamnell Btafos Sl o gt
B E‘Mﬁm&mm RS ET s
T T

Y15 _Tea T12 oz §uo fee Fa Te Fr 95 §s Fa Ta 2 §a Fe
e e :;rﬂm’“ﬁf'%:'fﬂﬁ
: | e | Pl | :

FEEEE

watle Ripple Lind Chpancl1 & Elaim: Svent Rpghier
W A ARG

=i prebile Roph Limi Cha e i e bus Goable Regqisie
: FrRagEl 5 STy A5

111 ‘fl ‘?11 T'm_'f_al i3

mﬁmm Calid
Wi ion it

nole Ripple Limi m-plm SHatuis £ iion Rpgisier
R LI CHE T GG]

T e 24

Status Bit Definitions of the Questionable Ripple Limit Channel {1-
167} Status Condition Register

1181

E5071C

Bit
Position

Name

Description

0

Trace 15, 16 Ripple Test
summary (questionable ripple
limit channel {1-16} extra status
register summary)

Set to "1" while one of the enabled
bits in the questionable ripple limit
channel {1-16} extra status event
register is set to "1."

Trace 1 Ripple Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the ripple test result for trace 1.

Trace 2 Ripple Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the ripple test result for trace 2.

Trace 3 Ripple Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the ripple test result for trace 3.

Trace 4 Ripple Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the ripple test result for trace 4.

Trace 5 Ripple Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the ripple test result for trace 5.

Trace 6 Ripple Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the ripple test result for trace 6.

Trace 7 Ripple Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the ripple test result for trace 7.

Trace 8 Ripple Test Fail

Set to "0" when a measurement
cycle begins;

1182

Program

set to "1" when the measurement
cycle finishes and returns "fail" as
the ripple test result for trace 8.

ming

Trace 9 Ripple Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the ripple test result for trace 9.

10

Trace 10 Ripple Test Fail

Set to "0" when a measurement

cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the ripple test result for trace 10.

11

Trace 11 Ripple Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the ripple test result for trace 11.

12

Trace 12 Ripple Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the ripple test result for trace 12.

13

Trace 13 Ripple Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the ripple test result for trace 13.

14

Trace 14 Ripple Test Fail

Set to "0" when a measurement
cycle begins;

set to "1" when the measurement
cycle finishes and returns "fail" as
the ripple test result for trace 14.

15

Not used

Always 0

Issuing the *CLS command will clear all the bits in the questionable ripple
limit channel {1-16} status event register.

1183

E5071C

Status Register for Ripple Limit (Trace) (2 of 2)

#mmﬁ&mg v Trape akws GraskFuchar
il mmiT|MMTnﬂ Regalo

AL
1l
E—==—=w
A
¥
I3
I-I
m
I
I
['.'
—--:sr
-J L
%
-
i
-

o il o ol o i o e o A sy P gl g
o ot e e o e
A a0 T e e e i A

wﬁﬁﬂmmwwmm
L

s “— p— —— — S—— — T — — — —" p—— __,__!'L_J < B LSRN RARES ORI
;'_- ';L- ;;_.-l_.; -_mI_IEiL_-:I-T;Ei'_rLi' ;I_-E iu_rLEiu‘-_-_Eii ;=:'-'-_ ;;:?-_-';Eilr_-' ;_.-L__..__':__ ';E-:u_-_";':_ ___.F'Iﬁ.m"mﬁlm!l
LF__;___L{__L_;_I__. _L__.L-_L_.%_L_I_L__ _J__I_L_-L__L_.___I__{L_. i |Hﬁinf-ﬂmﬁw
Wi —
RO TR MDD Q0% IME M TID % 1w W & [] [] i 1
i %ﬁmﬂh Biopl Limkt Cheannpl® Bl Taaep Fabus poditem Fponba
{ A L M S TR
i
T E‘li’l‘iﬁﬁ'ﬁﬁﬁmﬂﬂw
e e e e e e s e e e e e e ey e oy PGSR T]
l;—_?'::.l_-:T::::_'—_::'::&::F—_&::F—_&::%:E:Txi:: : e A TS T DS U| SRS PRt "':_. syl Frakivs Trageivn MRer
DU S S I A | (- - i e b L e L ey ThamesElm Miier
B ERILEE RN TTRG Y
M
FEE WCERE OGS A00% NE dplp W2 1
Thawoos B ey, 17 ncii i Mselifan

e 16228

Status Bit Definitions of the Questionable Ripple Limit Channel {1-
16} Extra Status Condition Register

Bit Name Description
Position

1184

Programming

0 Not used Always 0

1 Trace 15 Set to "0" when a measurement cycle begins;
Ripple Test set to "1" when the measurement cycle finishes and
Fail returns "fail" as the ripple test result for trace 15.

2 Trace 16 Set to "0" when a measurement cycle begins;
Ripple Test set to "1" when the measurement cycle finishes and
Fail returns "fail" as the ripple test result for trace 16

3-15 Not used Always 0

Issuing the *CLS command will clear all the bits in the questionable ripple
limit channel {1-16} extra status event register.

1185

E5071C

Working with Automatic Test System
Working with Automatic Test System

« Preventing Erroneous Key Operation on the Front Panel (key lock
feature)

o Improving Command Processing Speed
o Detecting Occurrence of an Error

1186

Programming

Preventing Erroneous Key Operation on the Front Panel (key lock feature)

When no operation is required from the front panel controls, the mouse, or
the keyboard, disabling these input devices can prevent any erroneous
operation that might be caused by accidentally touching the devices.

To turn on or off Key Locking, use the following commands:

Command Description

:SYST:KLOC:KBD Locking the front panel controls and the keyboard

:SYST:KLOC:MOUS | Locking the mouse and the touch screen

1187

E5071C

Improving Command Processing Speed

SCPI commands should be processed quickly to improve throughput when
such commands are frequently executed (for example, reading out traces
for each measurement).

With the E5071C, the processing time for SCPI commands can be improved
by decreasing the refresh rate of the LCD display.

Measurement results (trace) do not need to be updated

When the measurement trace does not need to be updated, turn off the
updating of the LCD display. This improves the processing speed of SCPI
commands and eliminates the time used for updating the screen.

To turn off the updating of the LCD display, use the following command:
:DISP:ENAB

Measurement results (trace) need to be updated

When the measurement trace needs to be updated, the processing speed
of SCPI commands can still be improved by controlling the update timing of
the LCD display:

1. Execute all SCPI commands that are required before measurement,
including commands setting conditions.

2. Turn OFF the update of the LCD display.
3. Perform the measurement.

4. Execute the commands for reading out measurement result or
analyzing the result. Note that reading out the result in binary format
will accelerate data transfer.

5. Execute the following command to update the LCD display once
:DISP:UPD

6. Return to Step 3.

Sample program

See Control LCD Update Timing.

1188

Programming

Detecting Occurrence of an Error
o Using Status Reporting System
e Using Error Queue

e Sample Program

Other topics about Working with Automatic Test System
Using Status Reporting System
The status of the E5071C can be detected through the status registers.

This section describes how to detect the end of measurement by using the
status registers.

The occurrence of an error will be present in the standard event status
register. An SRQ (service request) is useful when you create a program
that uses the information reported by this register to detect the occurrence
of an error.

To detect the end of sweep via an SRQ, use one of the following
commands:

*SRE
*ESE
Follow these steps:

1. Set the E5071C so that it generates an SRQ when any of the error
occurrence bits is set to 1 in the standard event status register.

2. When an SRQ is generated, the program interrupts the measurement
cycle.

SRQ generation sequence (when an error occurs)

1189

E5071C

"SRE 32

mmmﬁmﬂqmm

Alandard Ewenk

Hlatug Enable Regser

Lo [} 1 1 1 1 @ | o |*EsEe0

1 - f . » » (GU=drga1G32]
Eommand| Exection m“““,,"’*“m @
Erper BT - Emror
128 o4 3z % 3 4] 1
eE0T caET

Using Error Queue

An error queue holds the number for the error and the error message.
Reading the error queue allows the user to verify the error that has
occurred. To retrieve the content of an error queue, use the following
command:

:SYST.ERR?
The error queue can be used in the following ways:

1. It is used as a branch for error handling. When an error queue is
retrieved, it returns 0 as the error number and "No error" as the
error message if no error is detected. This can be used for detecting
of an error and for branching the flow of a program. This is also
useful when you wish to handle a specific error(s). Note that this
method will not allow the user to perform any processing during the
occurrence of an error.

2. When an error is detected using SRQ, the error queue is used to
examine the error. Refer to the sample program in this section.

Sample Program

See Error Detection (SRQ).

1190

Sample Programs
Sample Programs

Programming

This section shows sample programs with the SCPI commands which can
be executed from the external controller. See Application Programs under
VBA Programming about the sample programs for built-in VBA.

Analyzer Setup

Calibration

ECal

Power Calibration
Reading/Writing Error Coefficient
Waiting for Trigger (OPC?)
Waiting for Trigger (SRQ)
Error Detection (SRQ)

Reading Data in Ascii Format
Reading Data in Binary Format
Writing Data in Ascii Format
Writing Data in Binary Format
Peak Search

Bandwidth Search

Limit Test

Saving Files

Transferring Files

Fixture Simulator

Time Domain

Control Using SICL-LAN Server
Controlling Using Telnet Server
Handler Interface

Controlling E5091A

These sample program files can be downloaded from
http://www.agilent.com/find/ena_support.

1191

E5071C

Analyzer Setup
e« Overview

« Sample Program in Excel VBA
e Sample Program in HT Basic

Other topics about Sample Programs

Overview

The program listed in this section is a sample program that demonstrates
how to configure measurement conditions.

The sample program puts the instrument into the preset state, configures
it as shown in table below, and saves the settings to a file named

sample.sta.

See Setting up Analyzer for this programming.

Target settings

Item

Setting

Window Layout

Channel 1 in the upper window (2/3 of
the screen height) and channel 2 in the
lower window (1/3 of the screen height)

Sweep type

Segment

Sweep range

Number of measurement
Channel points

1
IF bandwidth

Power

See Segment table.

Number of traces

1192

Graph Layout

Programming

Four graphs at upper left, upper right,
lower left, and lower right.

Measurement S11
parameter

Trace 1 Data format Smith chart (Lin)
Full-scale value 2
Measurement S21
parameter
Data format Log magnitude
Reference division

Trace 2 line number 9
Reference division 5
line value
Scale per division 10 dBm
Measurement S12
parameter
Data format Log magnitude
Reference division

Trace 3 line number 9
Reference division 2
line value
Scale per division 10 dBm
Measurement S22
parameter

Trace 4 Data format Smith chart (Lin)
Full-scale value 2

Sweep type Linear

Channel Center value 1.9 GHz
2 Sweep
range Span value 500 MHz

1193

E5071C

Number of measurement

points 101

IF bandwidth 70 kHz
Power 0 dBm
Number of traces 4

Graph Layout

Two graphs at left and right

Measurement
parameter

S21

Data format

Log magnitude

Reference division

Trace 1 . 9
line number
Reference division 5
line value
Scale per division 10 dBm
Measurement S22
parameter
Trace 2 Data format Smith chart (Lin)

Full-scale value 2

Segment table for channel 1

Segment Start Stop Number of Power

Number value value measurement IE

[N bandwidth
1 1.7 1.9 21 50 kHz 0 dBm
GHz GHz
2 1.9 2 GHz 101 10 kHz -10
GHz dBm
3 2 GHz 2.2 21 50 kHz 0 dBm
GHz
Sample Program in Excel VBA
Sub Setup()
Dim defrm As Long
Dim vi As Long

1194

Programming
Const TimeOutTime = 20000

Dim Allocatel As String, Allocate2 As String, File As String
Dim Paral(4) As String, Para2(2) As String

Dim Fmt1(4) As String, Fmt2(2) As String

Dim Star1(3) As String, Stop1(3) As String

Dim IfBw1(3) As Double, IfBw2 As Double

Dim Powerl(3) As Double, Power2 As Double

Dim Cent2 As Double, Span2 As Double

Dim RefLev1(4) As Double, RefLev2(2) As Double, Scale1(4) As Double, Scale2(2) As Double
Dim Segm As Integer, Nop1(3) As Integer, Nop2 As Integer
Dim NumOfTr1 As Integer, NumOfTr2 As Integer

Dim RefPos1(4) As Integer, RefPos2(2) As Integer

Dim SendData As String

Segm = 3 " Number of Segment Ch.1: 3

Starl(1) ="1.7E9" ' Start Frequency Ch.1 Segm.1: 1.7 GHz
Starl(2) ="1.9E9" 'Segm.2:1.9 GHz

Star1(3) = "2E9" ' Segm.3: 2 GHz

Stop1(1l) ="1.9E9" ' Stop Frequency Ch.1 Segm.1: 1.9 GHz
Stopl1(2) = "2E9" ' Segm.2: 2 GHz

Stopl(3) ="2.2E9" ' Segm.3: 2.2 GHz

Cent2 = 1900000000# ' Center Frequency Ch.2 : 1.9 GHz
Span2 =500000000# ' Span Ch.2 : 500 MHz

Nopl(1) =21 " Number of points Segm.1: 21
Nopl(2) = 101 ‘ Segm.2: 101
Nopl(3) = 21 ' Segm.3: 21

Nop2 = 101 ' Ch.2:101

IfBwl(1) =50000# 'IFBW Ch.1 Segm.l: 50 kHz
IfBwl(2) = 10000# Segm.2: 10 kHz
IfBw1(3) = 500004 ' Segm.3: 50 kHz
IfBw2 = 700004 " Ch.2:70kHz

Powerl(1) =0 "Power Ch.1 Segm.1: 0 dBm
Powerl(2) =-10 ' Segm.2: -10 dBm
Powerl(3) =0 ' Segm.3: 0 dBm
Power2 =0 " Chz2:0dBm

NumOfTrl =4 "Number of Trace Ch.1: 4

1195

E5071C

NumOfTr2 =2 'Ch.2:2
Allocatel ="D12_34" 'Allocate Traces Ch.1:D12 34
Allocate2 ="D12" 'Ch.2:D12

Paral(1) = "S11"

' Measurement Ch.1 Tracel: S11

Paral(2) = "S21" " Parameter Trace2: S21
Paral(3) ="S12" 'Trace3: S12

Paral(4) ="S22" 'Traced: S22

Para2(1) ="S31" 'Ch.2 Tracel: S31
Para2(2) ="S33" 'Trace2: S33

Fmt1(1) = "SLIN" ' Data Format Ch.1 Tracel: Smith(Lin/Phase)
Fmt1(2) = "MLOG" ' Trace2: Log Mag
Fmt1(3) = "MLOG" 'Trace3: Log Mag
Fmt1(4) = "SLIN" ' Trace4: Smith(Lin/Phase)
Fmt2(1) = "MLOG" 'Ch.2 Tracel: Log Mag
Fmt2(2) = "SLIN" ' Trace2: Smith(Lin/Phase)

RefPos1(1) =9 'Reference Ch.1 Trace2: 9
RefPos1(2) =9 " Position Trace3: 9
RefPos2(1) =9 'Ch.2 Tracel: 9
RefLevl(1) =0 ' Reference Level Ch.1 Trace2: 0 dBm
RefLev1(2) =0 " Trace3: 0 dBm
RefLev2(1) =0 "Ch.2 Tracel: 0 dBm
Scalel(l) =2 " Scale Ch.1 Tracel: 2
Scale1(2) =10 'Trace2: 10 dBm

Scale1(3) =10 'Trace3: 10 dBm
Scalel(4)=2 'Traced: 2

Scale2(1) =10 'Ch.2 Tracel: 10 dBm
Scale2(2) =2 'Trace2: 2

StaFileName = "sample.sta

Save File Name : sample.sta

" Assigns a GPIB address to the 1/0 pass.
Call viOpenDefaultRM(defrm)

Call viOpen(defrm, "GPIB0::17::INSTR", 0, 0, vi)

Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, TimeOutTime) ' Set time out
Call viVPrintf(vi,
Call viVPrintf(vi,
Call viVPrintf(vi,

":SYST:PRES" + vbLf, 0)
":DISP:SPL D1_1 2" + vbLf, 0) 'Allocate Channel
"INIT1:CONT ON" + vbLf, 0) 'Turn on Continuous Activation mode for channel 1

1196

Programming

Call viVPrintf(vi, ":INIT2:CONT ON" + vbLf, 0) Turn on Continuous Activation mode for channel 2

' Setup Channel 1

Call viVPrintf(vi, ":SENS1:SWE:TYPE SEGM" + vbLf, 0) 'Sets channel 1 sweep type to segment
' Create the data string for Segment Table

SendData = "5,0,1,1,0,0," & Str(Segm)

Fori=1To Segm

SendData = SendData +"," & Star1(i) & "," + Stop1(i) & "," & CStr(Nop1())) & "," & CStr(IfBwl(i)) &
""" & CStr(Powerl(i))

Next i

Call viVPrintf(vi, ":SENS1:SEGM:DATA " + SendData + vbLf, 0)

Call viVPrintf(vi, ":CALC1:PAR:COUN " & CStr(NumOfTrl) & vbLf, 0) 'Set number of traces
Call viVPrintf(vi, :DISP:WIND1:SPL " & Allocatel & vbLf, 0) 'Set graph layout

Fori=1To NumOfTrl

Call viVPrintf(vi, ":CALC1:PAR" & CStr(i) & ":DEF " & Paral(i) & vbLf, 0) 'Set measurement
parameter

Call viVPrintf(vi, ":CALC1:PAR" & CStr(i) & ":SEL" & vbLf, 0) ' Make trace active
Call viVPrintf(vi, :CALC1:FORM " & Fmt1(i) & vbLf, 0) ' Set data format
Select Case Fmt1(i)
Case "SLIN", "SLOG", "SCOM", "SMIT", "SADM", "PLIN", "PLOG", "POL"
i ' If data format is neither Smith chart nor polar, sets reference division line number and scale per
ivision
Call viVPrintf(vi, ":DISP:WIND1:TRAC" & CStr(i) & ":Y:PDIV " + CStr(Scale1(i)) + vbLf, 0)
Case Else
"If data format is Smith chart or polar, set full-scale value
Call viVPrintf(vi, ":DISP:WIND1:TRAC" & CStr(i) & ":Y:RPOS " & CStr(RefPos1(i)) & vbLf, 0)
Call viVPrintf(vi, ":DISP:WIND1:TRAC" & CStr(i) & ":Y:RLEV " & CStr(RefLev1(i)) & vbLf, 0)
Call viVPrintf(vi, ":DISP:WIND1.TRAC" & CStr(i) & ":Y:PDIV " & CStr(Scalel(i)) & vbLf, 0)
End Select
Next i

* Setup Channel 2

1197

E5071C

Call viVPrintf(vi, ":SENS2:SWE:TYPE LIN " + vbLf, 0) ' Set sweep type to linear

Call viVPrintf(vi, :SENS2:FREQ:CENT " + CStr(Cent2) + vbLf, 0) ' Set center frequency
Call viVPrintf(vi, ":SENS2:FREQ:SPAN " + CStr(Span2) + vbLf, 0) ' Set span frequency

Call viVPrintf(vi, :SENS2:SWE:POIN " + CStr(Nop2) + vbLf, 0) ' Set number of points

Call viVPrintf(vi, ";SENS2:BAND " + CStr(IfBw2) + vbLf, 0) ' Set IFBW

Call viVPrintf(vi, ":SOUR2:POW " + CStr(Power2) + vbLf, 0) ' Set power level

Call viVPrintf(vi, :CALC2:PAR:COUN " & CStr(NumOfTr2) & vbLf, 0) ' Set number of traces
Call viVPrintf(vi, :DISP:WIND2:SPL " & Allocate2 & vbLf, 0) 'Set graph layout

Fori=1To NumOfTr2

Call viVPrintf(vi, ":CALC2:PAR" & CStr(i) & ":DEF " & Para2(i) & vbLf, 0) 'Set measurement
parameter

Call viVPrintf(vi, ":CALC2:PAR" & CStr(i) & ":SEL" & vbLf, 0) ' Make trace active
Call viVPrintf(vi, :CALC2:FORM " & Fmt2(i) & vbLf, 0) ' Set data format
Select Case Fmt2(i)
Case "SLIN", "SLOG", "SCOM", "SMIT", "SADM", "PLIN", "PLOG", "POL"
i ' If data format is neither Smith chart nor polar, sets reference division line number and scale per
ivision
Call viVPrintf(vi, ":DISP:WIND2: TRAC" & CStr(i) & ":Y:PDIV " + CStr(Scale2(i)) + vbLf, 0)
Case Else
"If data format is Smith chart or polar, set full-scale value
Call viVPrintf(vi, ":DISP:WIND2:TRAC" & CStr(i) & ":Y:RPOS " & CStr(RefPos2(i)) & vbLf, 0)
Call viVPrintf(vi, ":DISP:WIND2:TRAC" & CStr(i) & ":Y:RLEV " & CStr(RefLev2(i)) & vbLf, 0)
Call viVPrintf(vi, ":DISP:WIND2: TRAC" & CStr(i) & ":Y:PDIV " & CStr(Scale2(i)) & vbLf, 0)
End Select
Next i

Call viVPrintf(vi, “MMEM:STOR """ & StaFileName & "™ & vbLf, 0) ' Save ENA settings to file
'Close 10

Call viClose(vi)

Call viClose(defrm)

End Sub
Sample Program in HT Basic (setup.htb)

10 DIM Allocate1$[9],Allocate2$[9],File$[20]
20 DIM Paral$(1:4)[9],Para2$(1:2)[9],Fmt1$(1:4)[9],Fmt2$(1:2)[9]
30 REAL Star1(1:3),Stop1(1:3),Pow1(1:3),Cent2,Span2,Pow2

1198

40 REAL Ref_rev1(1:4),Ref _rev2(1:2),Scalel(1:4),Scale2(1:2)

50 INTEGER Segm,Nop1(1:3),Nop2,Num_of trl,Num_of tr2

60 INTEGER Ref_pos1(1:4),Ref _pos2(1:2),!

70 ASSIGN @Agte507x TO 717

80!

90 Segm=3 ! Number of Segment Ch.1: 3

100 Star1(1)=1.7E+9 ! Start Frequency Ch.1 Segm.1: 1.7 GHz

110 Star1(2)=1.9E+9 ! Segm.2: 1.9 GHz

120 Star1(3)=2.E+9 ! Segm.3: 2 GHz

130 Stop1(1)=1.9E+9 ! Stop Frequency Ch.1 Segm.1: 1.9 GHz

140 Stop1(2)=2.E+9 ! Segm.2: 2 GHz

150 Stop1(3)=2.2E+9 ! Segm.3: 2.2 GHz

160 Cent2=1.9E+9 ! Center Frequency Ch.2 : 1.9 GHz

170 Span2=5.00E+8 ! Span Ch.2 : 500 MHz

180 Nop1(1)=21 ! Number Ch.1 Segm.1: 21

190 Nop1(2)=101! of Points Segm.2: 101

200 Nop1(3)=21"! Segm.3: 21

210 Nop2=101"!Ch.2: 101

220 If_bw1(1)=5.0E+4 ! IF Bandwidth Ch.1 Segm.1: 50 kHz

230 If_bw1(2)=1.0E+4 ! Segm.2: 10 kHz

240 If_bw1(3)=5.0E+4 ! Segm.3: 50 kHz

250 If_bw2=7.0E+4 ! Ch.2: 70 kHz

260 Pow1(1)=0"! Power Ch.1 Segm.1: 0 dBm

270 Pow1(2)=-10 ! Segm.2: -10 dBm

280 Pow1(3)=0"! Segm.3: 0 dBm

290 Pow2=0"!Ch.2 : 0 dBm

300 Num_of tr1=4 ! Number Ch.1: 4

310 Num_of tr2=2! of Traces Ch.2: 2

320 Allocate1$="D12_34"! Allocate Traces Ch.1: D12 34

330 Allocate2$="D12" ! Ch.2 : D12

340 Paral$(1)="S11" ! Measurement Ch.1 Tracel: S11

350 Paral$(2)="S21" ! Parameter Trace2: S21

360 Paral$(3)="S12"! Trace3: S12

370 Paral$(4)="S22" ! Trace4: S22
(
(

380 Para2$(1)="S31"! Ch.2 Tracel: S31
390 Para2$(2)="S33" ! Trace2: S33
400 Fmt1$(1)="SLIN" ! Data Format Ch.1 Tracel: Smith(inPhase)

Programming

1199

E5071C

410 Fmt1$(2

(2)="MLOG" ! Trace2: Log Mag
420 Fmt1$(3

(

(

"MLOG" ! Trace3: Log Mag

430 Fmt1$(4)="SLIN" ! Trace4: Smith(LinPhase)

440 Fmt2$(1)="MLOG" ! Ch.2 Tracel: Log Mag

450 Fmt2$(2)="SLIN" ! Trace2: Smith(Lin/Phase)

460 Ref_pos1(2)=9 ! Reference Ch.1 Trace2: 9

470 Ref_pos1(3)=9 ! Position Trace3: 9

480 Ref_pos2(1)=9 ! Ch.2 Tracel: 9

490 Ref lev1(2)=0 ! Reference Level Ch.1 Trace2: 0 dBm

500 Ref_lev1(3)=0! Trace3: 0 dBm

510 Ref_lev2(1)=0! Ch.2 Tracel: 0 dBm

520 Scale1(1)=2! Scale Ch.1 Tracel: 2
)=1
)=
)=
)=

)=
)
)
)
)=

530 Scalel1(2

(

(2)=10! Trace2: 10 dBm
540 Scalel(3

(

(

10! Trace3: 10 dBm

550 Scalel(4)=2! Trace4: 2

560 Scale2(1)=10"! Ch.2 Tracel: 10 dBm

570 Scale2(2)=2 ! Trace2: 2

580 File$="sample.sta" ! Save File Name : sample.sta

590!

600 OUTPUT @Agte507x;":SYST:PRES"

610!

620 OUTPUT @Agte507x;":DISP:SPL D1 1 2"

630 OUTPUT @Agte507x;":INIT1:CONT ON"

640 OUTPUT @Agte507x;":INIT2:CONT ON"

650 !

660 ! Channel 1

670!

680 OUTPUT @Agte507x;":SENS1:SWE:TYPE SEGM"

690 OUTPUT @Agte507x;":SENS1:SEGM:DATA 5,0,1,1,0,0,";Segm;",";
700 FOR I=1 TO Segm-1

710 OUTPUT @Agte507x;Starl(l);",";Stop1(l):",":NopL(1);","If_bwl (1):" ":Powd(l);",";
720 NEXT |

730 OUTPUT @Agte507x;Star1(Segm);",";Stop1(Segm);",";Nop1(Segm);","
If_bw1(Segm);",";Pow(Segm)

740!
750 OUTPUT @Agte507x;":CALC1:PAR:COUN ";Num_of_trl
760 OUTPUT @Agte507x;":DISP:WIND1:SPL "&Allocate1$

1200

Programming

770 FOR 1=1 TO Num_of trl

780 OUTPUT @Agte507x;":CALC1:PAR"&VAL$()&":DEF "&Paral$(l)

790 OUTPUT @Agte507x;":CALC1:PAR"&VAL$(I)&" SEL"

800 OUTPUT @Agte507x;":CALCL:FORM "&Fmt1%(l)

810 SELECT Fmt1$(1)

820 CASE "SLIN","SLOG","SCOM","SMIT","SADM","PLIN","PLOG","POL"

830 OUTPUT @Agte507x;":DISP:WIND1:TRAC"&VALS$(1)&":Y:PDIV "; Scalel(l)
840 CASE ELSE

850 OUTPUT @Agte507x;":DISP:WIND1: TRAC"&VALS$()&"Y:RPOS "; Ref posi(l)
860 OUTPUT @Agte507x;":DISP:WIND1:TRAC"&VALS$(1)&":Y:RLEV "; Ref_revi(l)
870 OUTPUT @Agte507x;":DISP:WIND1:TRAC"&VALS$(1)&":Y:PDIV "; Scalel(l)
880 END SELECT

890 NEXT |

900!

910! Channel 2

920!

930 OUTPUT @Agte507x;":SENS2:SWE:TYPE LIN"

940 OUTPUT @Agte507x;":SENS2:FREQ:CENT ";Cent2

950 OUTPUT @Agte507x;":SENS2:FREQ:SPAN ";Span2

960 OUTPUT @Agte507x;":SENS2:SWE:POIN ";Nop2

970 OUTPUT @Agte507x;":SENS2:BAND ";If_bw2

980 OUTPUT @Agte507x;":SOUR2:POW ";Pow2

990!

1000 OUTPUT @Agte507x;":CALC2:PAR:COUN ";Num_of_tr2

1010 OUTPUT @Agte507x;":DISP:WIND2:SPL "&Allocate2$

1020 FOR I=1 TO Num_of tr2

1030 OUTPUT @Agte507x;":CALC2:PAR"&VALS$(1)&":DEF "&Para2%(1)

1040 OUTPUT @Agte507x;":CALC2:PAR"&VALS$(1)&":SEL"

1050 OUTPUT @Agte507x;":CALC2:FORM "&Fmt23(1)

1060 SELECT Fmt2%(1)

1070 CASE "SLIN","SLOG","SCOM","SMIT","SADM","PLIN","PLOG","POL"

1080 OUTPUT @Agte507x;":DISP:WIND2:TRAC"&VALS(1)&":Y:PDIV "; Scale2(l)
1090 CASE ELSE

1100 OUTPUT @Agte507x;":DISP:WIND2:TRAC"&VAL$(1)&":Y:RPOS "; Ref_pos2(l)
1110 OUTPUT @Agte507x;":DISP:WIND2:TRAC"&VALS$(1)&":Y:RLEV "; Ref_rev2(l)
1120 OUTPUT @Agte507x;":DISP:WIND2:TRAC"&VALS(1)&"Y:PDIV "; Scale2(l)
1130 END SELECT

1201

E5071C

1140 NEXT |

1150'!

1160 OUTPUT @Agte507x;":MMEM:STOR ""&File$&"""
1170 END

1202

Programming

Calibration
o Overview
« Sample Program in Excel VBA
e Sample Program in HT Basic

Other topics about Sample Programs

Overview
The sample program performs calibration with the specified calibration
type.

See Calibration for this programming.
Sample Program in Excel VBA

Sub Cal_Click()

Dim defrm As Long 'Session to Default Resource Manager
Dim vi As Long ‘Session to instrument
Dim Ch As String

Dim CalKit As Integer
Dim Port(4) As String

Const TimeOutTime = 40000 'timeout time.
Const Cal85032F =4 ‘cal kit number.

Ch = Cells(5, 5) ‘Select channel
Port(1) = Cells(3, 6) 'Sets the select port 1.

Port(2) = Cells(3,7) 'Sets the select port 2.
Port(3) = Cells(3,8) 'Sets the select port 3.
Port(4) = Cells(3,9) 'Sets the select port 4.

CalKit = Cal85032F 'Sets cal kit (85032F)
Call viOpenDefaultRM(defrm) ‘Initializes the VISA system.

Call viOpen(defrm, "GPIB0::17::INSTR", 0, 0, vi) 'Opens the session to the specified instrument.

Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, TimeOutTime) 'The state of an attribute for the
specified session.

Call viVPrintf(vi, "*RST" & vbLf, 0) 'Presets the setting state of the ENA.
Call viVPrintf(vi, "*CLS" & vbLf, 0) 'Clears the all status register.

Call viVPrintf(vi, “SENS" & Ch & ":CORR:COLL:CKIT " & CalKit & vbLf, 0) 'Select the calibration kit

1203

E5071C

Select Case Cells(3, 5)
Case "Response (Open)" 'Perform response calibration (OPEN).
Call Cal_Resp(vi, Ch, "OPEN", Port(1))
Case "Response (Short)" 'Perform response calibration (SHORT).
Call Cal_Resp(vi, Ch, "Short", Port(1))
Case "Response (Thru)" 'Perform response calibration (Thru).
Call Cal_RespThru(vi, Ch, "Thru", Port(1), Port(2))
Case "Full 1 Port" 'Perform 1-port calibration.
Call Cal_Slot(vi, Ch, 1, Port)
Case "Full 2 Port" 'Perform full 2-port calibration.
Call Cal_Slot(vi, Ch, 2, Port)
Case "Full 3 Port" 'Perform full 3-port calibration.
Call Cal_Slot(vi, Ch, 3, Port)
Case "Full 4 Port" 'Perform full 4-port calibration.
Call Cal_Slot(vi, Ch, 4, Port)
End Select

Call viClose(vi) 'Closes the resource manager session.
Call viClose(defrm) 'Breaks the communication and terminates the VISA system.

End 'End
End Sub

Sub Cal_Resp(vi As Long, Ch As String, CalType As String, Port As String)
Dim Dummy As Variant 'Variant to receive the result

Call viVPrintf(vi, :SENS" & Ch & ":CORR:COLL:METH:" & CalType & " " & Port & vbLf, 0) 'Sets the
calibration type.

MsgBox ("Set " & CalType & " to Port " & Port & ". then click [OK] button") 'Display the message box.

Call viVPrintf(vi, :.SENS" & Ch & ":.CORR:COLL:" & CalType &" " & Port & vbLf, 0) 'Measurement the
calibration data.

Call vivQueryf(vi, "*OPC?" & vbLf, "%t", Dummy) 'Reads the *OPC? result.

Call viVPrintf(vi, :SENS" & Ch & ":CORR:COLL:SAVE" & vbLf, 0) 'Calculating the calibration
coefficients.

Call ErrorCheck(vi) 'Checking the error.

1204

Programming

End Sub

Sub Cal_RespThru(vi As Long, Ch As String, CalType As String, Portl As String, Port2 As String)
Dim Dummy As Variant 'Variant to receive the result.

If Portl <> Port2 Then

Call viVPrintf(vi, ":.SENS" & Ch & ":.CORR:COLL:METH:" & CalType & " " & Portl & "," & Port2 &
vbLf, 0) 'Sets the calibration type

MsgBox ("Set " & CalType & " to Port " & Portl & "&" & Port2 & . then click [OK] button") 'Display
the message box.

Call viVPrintf(vi, :SENS" & Ch & ":CORR:COLL:" & CalType &"" & Portl & "," & Port2 & vbLf, 0)
'Measurement the calibration data.

Call vivQueryf(vi, "*OPC?" & vbLf, "%t", Dummy) 'Reads the *OPC? result,

Call viVPrintf(vi, ":SENS" & Ch & ".CORR:COLL:SAVE" & vbLf, 0) 'Calculating the calibration
coefficients.

Call ErrorCheck(vi) 'Checking the error.
Else

MsgBox (“Thru calibration select port error!”) 'Displaying the error message when selected same
ports.

Exit Sub
End If

End Sub

Sub Cal_Slot(vi As Long, Ch As String, NumPort As String, Port() As String)
Dim Dummy
Dim i As Integer, j As Integer

Select Case NumPort
Case 1

Call viVPrintf(vi, “SENS" & Ch & ":CORR:COLL:METH:SOLT" & NumPort & " " & Port(1) & VbLf,
0) 'Set the 1-port calibration type.

Case 2

Call viVPrintf(vi, ":SENS" & Ch & ":CORR:COLL:METH:SOLT" & NumPort & " " & Port(1) & "," &
Port(2) & vbLf, 0) 'Set the full 2-port calibration type.

Case 3

1205

E5071C

Call viVPrintf(vi, ":SENS" & Ch & ":CORR:COLL:METH:SOLT" & NumPort & " " & Port(1) &"," &
Port(2) & "," & Port(3) & vbLf, 0) 'Set the full 3-port calibration type.

Case 4

Call viVPrintf(vi, :SENS" & Ch & ":CORR:COLL:METH:SOLT4 1,2,3,4" & vbLf, 0) 'Set the full 4-
port calibration type.

End Select
'Reflection
Fori=1To NumPort
MsgBox ("Set Open to Port " & Port(i) & ". then click [OK] button") 'Display the message box.

Call viVPrintf(vi, ":.SENS" & Ch & ":.CORR:COLL:OPEN " & Port(i) & vbLf, 0) 'Measurement the
OPEN calibration.

Call vivQueryf(vi, "*OPC?" & vbLf, "%t", Dummy) 'Reads the *OPC? result.

MsgBox ("Set Short to Port " & Port(i) & ". then click [OK] button”) 'Display the message box.

Call viVPrintf(vi, ":SENS" & Ch & ":.CORR:COLL:SHORT " & Port(i) & vbLf, 0) 'Measurement the
SHORT calibration.

Call vivQueryf(vi, "*OPC?" & vbLf, "%t", Dummy) 'Reads the *OPC? result.

MsgBox ("Set Load to Port " & Port(i) & ". then click [OK] button") 'Display the message box.

Call viVPrintf(vi, ":.SENS" & Ch & ":.CORR:COLL:LOAD " & Port(i) & vbLf, 0) 'Measurement the
LOAD calibration.

Call vivQueryf(vi, "*OPC?" & vbLf, "%t", Dummy) 'Reads the *OPC? result.
Next i
‘Transmission
Fori=1To NumPort - 1

Forj=i+1To NumPort

MsgBox ("Set Thru to Port " & Port(i) & "&" & Port(j) & ". then click [OK] button") 'Display the
message box.

Call viVPrintf(vi, ":SENS" & Ch & ":CORR:COLL:THRU " & Port(i) & "," & Port(j) & vbLf, 0)
'Measurement the THRU calibration.

Call vivQueryf(vi, "*OPC?" & vbLf, "%t", Dummy) 'Reads the *OPC result.

Call viVPrintf(vi, :SENS" & Ch & ":CORR:COLL:THRU " & Port(j) &"," & Port(i) & vbLf, 0)
'Measurement the THRU calibration.

Call vivQueryf(vi, "*OPC?" & vbLf, "%t", Dummy) 'Reads the *OPC result.
Next |
Next i

Call viVPrintf(vi, :SENS" & Ch & ":.CORR:COLL:SAVE" & vbLf, 0) 'Calculating the calibration
coefficients.

Call ErrorCheck(vi) 'Checking the error.

1206

Programming

End Sub
Sub ErrorCheck(vi As Long)
Dim err As String * 50, ErrNo As Variant, Response

Call vivQueryf(vi, :SYST:ERR?" & vbLf, "%t", err) 'Reads error message.
ErrNo = Split(err, ",") 'Gets the error code.

If Val(ErrNo(0)) <> 0 Then
Response = MsgBox(CStr(ErrNo(1)), vbOKOnly) 'Display the message box.
End If
End Sub

Sample Program in HT Basic (cal.htb)
10 DIM File$[20],Ch3[9],Inp_char$[9]
20 INTEGER Cal_kit,Cal_type,Port(1:4)
30!
40 ASSIGN @Agte507x TO 717
50 File$="Ex_4_1.sta"
60 Ch$="1"
70!
80 Select_cal_kit(@Agte507x,Ch$)
90!
100 CLEAR SCREEN
110 ON ERROR GOTO Type_select
120 Type_select: !
130 PRINT "## Calibration Type Selection ##"
140 PRINT " 1: Response (Open)"
150 PRINT " 2: Response (Short)"
160 PRINT " 3: Response (Thru)"
170 PRINT " 4: Full 1 Port"
180 PRINT " 5: Full 2 Port"
190 PRINT " 6: Full 3 Port"
200 PRINT " 7: Full 4 Port"
210 PRINT ™
220 PRINT "Input 1 to 7"
230 INPUT "Input number? (1 to 7)",Inp_char$
240 Cal_type=IVAL(Inp_char$,10)

1207

E5071C

250 IF Cal_type<1 OR Cal_type>7 THEN Type_select
260 OFF ERROR

270!

280 SELECT Cal_type

290 CASE 1

300 Select_port(1,Port(*))

310 Cal_resp(@Agte507x,Ch$,"OPEN",Port(1))

320 CASE 2

330 Select_port(1,Port(*))

340 Cal_resp(@Agte507x,Ch$,"SHOR",Port(1))

350 CASE 3

360 Select_port(2,Port(*))

370 Cal_resp_thru(@Agte507x,Ch$,Port(1),Port(2))
380 CASE 4

390 Select_port(1,Port(*))

400 Cal_solt(@Agte507x,Ch$,1,Port(*))

410 CASE 5

420 Select_port(2,Port(*))

430 Cal_solt(@Agte507x,Ch$,2,Port(*))

440 CASE 6

450 Select_port(3,Port(*))

460 Cal_solt(@Agte507x,Ch$,3,Port(*))

470 CASE 7

480 Select_port(4,Port(*))

490 Cal_solt(@Agte507x,Ch$,4,Port(*))

500 END SELECT

510!

520 OUTPUT @Agte507x;":MMEM:STOR:STYP CST"
530 OUTPUT @Agte507x;":MMEM:STOR ""&File$&""
540 END

550 !

560 ! Calibration Kit Selection Function

570!

580 SUB Select_cal_kit(@Agte507x,Ch$)
590 DIM Cal_kit_Ibl$(1:10)[20],Inp_char$[9]
600 INTEGER Cal_kit,|

610 CLEAR SCREEN

1208

Programming

620!

630 FOR I=1 TO 10

640 OUTPUT @Agte507x;":SENS1:CORR:COLL:CKIT "

650 OUTPUT @Agte507x;":SENS1:CORR:COLL:CKIT:LAB?"

660 ENTER @Agte507x;Cal_kit_IbI$(1)

670 NEXT |

680 ON ERROR GOTO Kit_select

690 Kit_select: !

700 PRINT "## Calibration Kit Selection ##"

710 FOR =1 TO 10

720 PRINT USING "X,2D,A,X,20A"1,"" Cal_kit_IbI$(I)

730 NEXT |

740 PRINT ™

750 PRINT "Input 1 to 10"

760 INPUT "Input number? (1 to 10)",Inp_char$

770 Cal_kit=IVAL(Inp_char$,10)

780 IF Cal_kit<1 OR Cal_kit>10 THEN Kit_select

790 OFF ERROR

800!

810 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:CKIT ";Cal_kit
820 SUBEND

830!
840 ! Port Selection Function
850!
860 SUB Select_port(INTEGER Num_of ports,INTEGER Port(*))
870 DIM Inp_char$[9]

880!

890 CLEAR SCREEN

900 IF Num_of_ports=4 THEN

910 Port(1)=1

920 Port(2)=2

930 Port(3)=3

940 Port(4)=4

950 ELSE

960 PRINT "## Test Ports Selection ##"

970 ON ERROR GOTO Port_select

980 FOR I=1 TO Num_of ports

1209

E5071C

990 PRINT "Port("&VAL$(1)&"):"

1000 Port_select:!

1010 INPUT "Number?",Inp_char$

1020 Port(l)=IVAL(Inp_char$,10)

1030 IF Port(I)<1 OR Port(l)>4 THEN Port_select
1040 FOR J=1TOI-1

1050 IF Port(l)=Port(J) THEN Port_select

1060 NEXT J

1070 PRINT Port(1)

1080 NEXT |

1090 OFF ERROR

1100 END IF

1110 SUBEND

1120'!
1130 ! Response (Open/Short) Calibration Function
1140'!
1150 SUB Cal_resp(@Agte507x,Ch$, Type$,INTEGER Port)

1160 DIM Buff$[9)]

1170!

1180 PRINT "## Response ("&Type$&") Calibration ##"

1190 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:METH:"&Type$&" *;Port
1200 PRINT "Set "&Type$&" to Port "&VAL$(Port)&". Then push [Enter] key."

1210 INPUT "™ ,Buff$

1220 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:"&Type$&" ";Port

1230 OUTPUT @Agte507x;"*OPC?"

1240 ENTER @Agte507x;Buff$

1250 OUTPUT @Agte507x;":SENS"&Ch$&":.CORR:COLL:SAVE"

1260 PRINT "Done"

1270 SUBEND

1280!
1290 ! Response (Thru) Calibration Function
1300'!
1310 SUB Cal_resp_thru(@Agte507x,Ch$,INTEGER Port1,Port2)

1320 DIM Buff$[9]

1330!

1340 PRINT "## Response (Thru) Calibration ##"

1350 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:METH:THRU ";Port1;","; Port2

1210

Programming

1360 PRINT "Set THRU between Port "&VAL$(Port1)&" and Port "&VAL$(Port2)&". Then push [Enter]
key."

1370 INPUT " ,Buff$

1380 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:THRU ";Port1;",";Port2
1390 OUTPUT @Agte507x;*OPC?"

1400 ENTER @Agte507x;Buff$

1410 OUTPUT @Agte507x;":SENS"&Ch$&":.CORR:COLL:SAVE"

1420 PRINT "Done"

1430 SUBEND

1440 !
1450 ! Full n Port Calibration Function
1460 !
1470 SUB Cal_solt(@Agte507x,Ch$,INTEGER Num_of_ports,INTEGER Port(*))

1480 DIM Buff$[9)]

1490 INTEGER 1,J

1500 !

1510 PRINT "## Full "&VAL$(Num_of_ports)&" Port Calibration ##"

1520'!

1530 ! Calibration Type Selection

1540'!

1550 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:METH:SOLT"&VAL$(Num_of _ports)&" ";
1560 FOR I=1 TO Num_of ports-1

1570 OUTPUT @Agte507x;Port(1);",":

1580 NEXT |

1590 OUTPUT @Agte507x;Port(Num_of_ports)

1600 !

1610 ! Reflection Measurement

1620 !

1630 FOR I=1 TO Num_of_ports

1640 PRINT "Set OPEN to Port "&VAL$(Port(1))&". Then push [Enter] key."

1650 INPUT "™ ,Buff$

1660 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:OPEN ";Port(l)

1670 OUTPUT @Agte507x;"*OPC?"

1680 ENTER @Agte507x;Buff$

1690 PRINT "Set SHORT to Port "&VAL$(Port(1))&". Then push [Enter] key."

1700 INPUT "™ ,Buff$

1710 OUTPUT @Agte507x;":SENS"&Ch$&":.CORR:COLL:SHOR ";Port(l)

1211

E5071C

1720 OUTPUT @Agte507x;"*OPC?"

1730 ENTER @Agte507x;Buff$

1740 PRINT "Set LOAD to Port "&VAL$(Port(1))&". Then push [Enter] key."
1750 INPUT "™ Buff$

1760 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:LOAD ";Port(l)
1770 OUTPUT @Agte507x;"*OPC?"

1780 ENTER @Agte507x;Buff$

1790 NEXT |

1800 !

1810 ! Transmission Measurement

1820 !

1830 FOR I=1 TO Num_of ports-1

1840 FOR J=I+1 TO Num_of_ports

1850 PRINT "Set THRU between Port "&VAL$(Port(l))&" and Port "& VAL$(Port(J))&". Then push [Enter]
key."

1860 INPUT " ,Buff$

1870 OUTPUT @Agte507x;":SENS"&Ch$&":.CORR:COLL:THRU ";Port(l);"," ;Port(J)
1880 OUTPUT @Agte507x;"*OPC?"

1890 ENTER @Agte507x;Buff$

1900 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:THRU ";Port(J);"," ;Port(l)
1910 OUTPUT @Agte507x;"*OPC?"

1920 ENTER @Agte507x;Buff$

1930 NEXT J

1940 NEXT |

1950 !

1960 ! Done

1970 !

1980 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:SAVE"

1990 PRINT "Done"

2000 SUBEND

1212

Programming

ECal
o Overview
« Sample Program in Excel VBA
e Sample Program in HT Basic

Other topics about Sample Programs

Overview

The sample program performs 1-port or 2-port calibration using ECal.

See Calibration for this programming.
Sample Program in Excel VBA

Sub ECal_Click()

Dim defrm As Long 'Session to Default Resource Manager
Dim vi As Long 'Session to instrument
Dim Ch As String

Dim CalKit As Integer
Dim Port(4) As String
Const TimeOutTime = 40000 'timeout time.

Ch = Cells(5, 5) ‘Select channel

Port(1) = Cells(3,6) 'Sets the select port 1.
Port(2) = Cells(3,7) 'Sets the select port 2.
Port(3) = Cells(3,8) 'Sets the select port 3.
Port(4) = Cells(3,9) 'Sets the select port 4.

Call viOpenDefaultRM(defrm) Initializes the VISA system.
Call viOpen(defrm, "GPIB0::17::INSTR", 0, 0, vi) 'Opens the session to the specified instrument.

Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, TimeOutTime) 'The state of an attribute for the
specified session.

Call viVPrintf(vi, "*RST" & vbLf, 0) 'Presets the setting state of the ENA.
Call viVPrintf(vi, "*CLS" & vbLf, 0) 'Clears the all status register.

Select Case Cells(3, 5)
Case "1 Port"
Call ECal(vi, Ch, 1, Port) 'Perform 1-port calibration.
Case "2 Port"
Call ECal(vi, Ch, 2, Port) 'Perform full 2-port calibration.
Case "3 Port"

1213

E5071C

Call ECal(vi, Ch, 3, Port) 'Perform full 3-port calibration.
Case "4 Port"
Call ECal(vi, Ch, 4, Port) 'Perform full 4-port calibration.
End Select
Call viClose(vi) 'Closes the resource manager session.
Call viClose(defrm) 'Breaks the communication and terminates the VISA system.
End
End Sub
Sub ECal(vi As Long, Ch As String, NumPort As String, Port() As String)
Dim Dummy As Variant
Dim i As Integer, j As Integer

Select Case NumPort
Case 1
MsgBox ("Connect Port " & Port(1) & ". then click [OK] button”) 'Display the message box.

Call viVPrintf(vi, ":SENS" & Ch & ":CORR:COLL:ECAL:SOLT" & NumPort & " " & Port(1) & VbLf,
0) 'Execute the 1-port calibration.

Case 2

MsgBox ("Connect Port " & Port(1) & " and Port " & Port(2) & ". then click [OK] button”) 'Display
the message box.

Call viVPrintf(vi, :SENS" & Ch & ":.CORR:COLL:ECAL:SOLT" & NumPort & " " & Port(1) & "," &
Port(2) & vbLf, 0) 'Execute the full 2-port calibration.

Case 3

MsgBox ("Connect Port " & Port(1) & "," & Port(2) & " and Port " & Port(3) & ". then click [OK]
button") 'Display the message box.

Call viVPrintf(vi, :SENS" & Ch & ":.CORR:COLL:ECAL:SOLT" & NumPort & "" & Port(1) &"," &
Port(2) &"," & Port(3) & vbLf, 0) 'Execute the full 3-port calibration.

Case 4
MsgBox ("Connect Port 1, 2, 3 and 4. then click [OK] button") 'Display the message box.

Call viVPrintf(vi, :SENS" & Ch & ":.CORR:COLL:ECAL:SOLT4 1,2,3,4" & vbLf, 0) 'Execute the full
4-port calibration.

End Select
Call ErrorCheck(vi) 'Checking the error.
End Sub

Sub ErrorCheck(vi As Long)
Dim err As String * 50, ErrNo As Variant, Response

1214

Programming

Call vivQueryf(vi, ":SYST.ERR?" & vbLf, "%t", err) 'Reads error message.
ErrNo = Split(err, ",") 'Gets the error code.
If Val(ErrNo(0)) <> 0 Then
Response = MsgBox(CStr(ErrNo(1)), vbOKOnly) 'Display the message box.
End If
End Sub

Sample Program in HT Basic (ecal.htb)
10 DIM File$[20],Ch$[9],Inp_char$[9]
20 INTEGER Cal_kit,Cal_type,Port(1:4)
30!
40 ASSIGN @Agte507x TO 717
50 File$="Ex_4_2.sta"
60 Ch$="1"
70!
80 CLEAR SCREEN
90 ON ERROR GOTO Type_select
100 Type_select: !
110 PRINT "## Calibration Type Selection ##"
120 PRINT " 1: Full 1 Port"
130 PRINT " 2: Full 2 Port"
140 PRINT " 3: Full 3 Port"
150 PRINT " 4: Full 4 Port"
160 PRINT ™
170 PRINT "Input 1 to 4"
180 INPUT "Input number? (1 to 4)",Inp_char$
190 Cal_type=IVAL(Inp_char$,10)
200 IF Cal_type<1 OR Cal_type>4 THEN Type_select
210 OFF ERROR
220!
230 Select_port(Cal_type,Port(*))
240 Ecal(@Agte507x,Ch$,Cal_type,Port(*))
250!
260 OUTPUT @Agte507x;":MMEM:STOR:STYP CST"
270 OUTPUT @Agte507x;":MMEM:STOR ""&File$&""
280 END
290!
300 ! Port Selection Function

1215

E5071C

310!
320 SUB Select_port(INTEGER Num_of ports,INTEGER Port(*))
330 DIM Inp_char$[9]

340!

350 CLEAR SCREEN

360 IF Num_of_ports=4 THEN

370 Port(1)=1

380 Port(2)=2

390 Port(3)=3

400 Port(4)=4

410 ELSE

420 PRINT "## Test Ports Selection ##"

430 ON ERROR GOTO Port_select

440 FOR =1 TO Num_of ports

450 PRINT "Port("&VAL$(1)&"):";

460 Port_select: !

470 INPUT "Number?",Inp_char$

480 Port(l)=IVAL(Inp_char$,10)

490 IF Port(1)<1 OR Port(l)>4 THEN Port_select

500 FORJ=1TO I-1

510 IF Port(l)=Port(J) THEN Port_select

520 NEXT J

530 PRINT Port(l)

540 NEXT |

550 OFF ERROR

560 END IF

570 SUBEND

580!
590 ! Electronic Calibration Function
600 !
610 SUB Ecal(@Agte507x,Ch$,INTEGER Num_of ports,INTEGER Port(*))
620 DIM Buff$[9],Err_msg$[100]

630 INTEGER Err_no,Portl

640!

650 PRINT "## Full "&VAL$(Num_of ports)&" Port ECal ##"

660 !

670 OUTPUT @Agte507x;"*CLS"

1216

Programming

680 SELECT Num_of_ports

690 CASE 1

700 PRINT "Connect Port "&VAL$(Port(1))&" to ECal Module."

710 PRINT "Then push [Enter] key."

720 INPUT " Buff$

730 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:ECAL:SOLT1 ";Port(1)
740 CASE 2

750 PRINT "Connect Port "&VAL$(Port(1));

760 PRINT " and Port "&VAL$(Port(2))&" to ECal Module."

770 PRINT "Then push [Enter] key."

780 INPUT ™ Buff$

790 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:ECAL:SOLT2 ";Port(1); ",";Port(2)
800 CASE 3

810 PRINT "Connect Port "&VAL$(Port(1));

820 PRINT ", Port "&VAL$(Port(2));

830 PRINT " and Port "&VALS$(Port(3))&" to ECal Module."

840 PRINT "Then push [Enter] key."

850 INPUT " Buff$

860 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:ECAL:SOLT3 ";Port(1); ",";Port(2);",";Port(3)
870 CASE 4

880 PRINT "Connect Port 1, Port 2, Port 3 and Port 4 to to ECal Mod ule."

890 PRINT "Then push [Enter] key."

900 INPUT " Buff$

910 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:ECAL:SOLT4 1,2,3,4"
920 END SELECT

930 PRINT "Executing ..."

940 OUTPUT @Agte507x;":SYST:ERR?"

950 ENTER @Agte507x;Err_no,Err_msg$

960 IF Err_no<>0 THEN

970 PRINT "Error occurred!!"

980 PRINT " No:";Err_no,"Description: "&Err_msg$

990 PRINT "ECAL INTERRUPT!!"

1000 ELSE

1010 PRINT "Done"

1020 END IF

1030 SUBEND

1217

E5071C

Power Calibration
« Overview
 Sample Program in Excel VBA
 Sample Program in HT Basic

Other topics about Sample Programs

Overview
This program that demonstrates how to perform power calibration.

This program, as shown in the figure below, is run by making connections
between the E5071C and the power meter (E4418B) through the
USB/GPIB interface and between the E5071C and the external controller
through the GPIB cable. Then the program executes the power calibration
of the E5071C by using the power sensor (E4412A). The obtained power
calibration data array is saved into a file.

Connecting E5071C, power meter, and external controller
EPIE Controller

™
C— — GP'B Cﬂblﬁ'/ :', = : f Y‘i
PIE
Inieriste
GPIE
ﬁ Fower Sensor
(E44124)

esiTeitd

See Power Calibration for this programming.
Sample Program in Excel VBA

Sub pow_cal_Click()
Dim defrm As Long

Dim vi As Long
Dim SwpType As String, StartPower As String, StopPower As String, CwFreq As String

1218

Programming

Dim Nop As Long, NumOfAve As String, Limit As Double, CorrData() As Double

Dim Result As String * 10000, OpcRes As String * 2, Res As Variant

Dim i As Long, Stat As VbMsgBoxResult

Dim err As String * 50, ErrNo As Variant

Const TimeOutTime = 50000 ' TimeOut time should be greater than the measurement time.
" Assign a GPIB address to the I/O pass.

Call viOpenDefaultRM(defrm)

Call viOpen(defrm, "GPIB0::17::INSTR", 0, 0, vi)

Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, TimeOutTime)

SwpType = "POW" ' Sweep type : POWER
Nop =21 " Number of points 141
StartPower = "-20" ' Start Power :-20 dBm
StopPower ="-10" ' Stop Power :-10 dBm
CwFreq ="1E9" ' CW frequency :1GHz
NumOfAve = "4" "Number of averaging : 4

Limit = 10 " Limit for corrected data : 10 dBm

Call viVPrintf(vi, :SYST:PRES" + vbLf, 0) ' Presetting the analyzer

Call viVPrintf(vi, :SYST:COMM:GPIB:PMET:ADDR 13" + vbLf, 0) ' Setting GPIB address of the power
meter to ENA

' Setting measurement conditions

Call viVPrintf(vi, :SENS1:SWE:TYPE " & SwpType & vbLf, 0)
Call viVPrintf(vi, :SENS1:SWE:POIN " & CStr(Nop) & vbLf, 0)
Call viVPrintf(vi, “SOUR1:POW:STAR " & StartPower & vbLf, 0)
Call viVPrintf(vi, :SOUR1:POW:STOP " & StopPower & vbLf, 0)
Call viVPrintf(vi, “SENS1:FREQ " & CwFreq & vbLf, 0)

Stat = MsgBox("Do you perform zeroing and calibrating the power sensor?", vbYesNo)

If Stat = vbYes Then

MsgBox "Zero and calibrate the power sensor by using the power meter, then press [OK] key.",
vbOKOnly

End If

MeasStart:

1219

E5071C

' Connecting the power sensor A to the port-1 of ENA
Call viVPrintf(vi, "*CLS" + vbLf, 0)

Stat = MsgBox("Set the power sensor connected to the port 1 in the ENA, then press [OK] key.",
vbOKOnly)

" Performing power calibration measurement
Call viVPrintf(vi, :SOUR1:POW:PORT1:CORR:COLL:AVER " & NumOfAve & vbLf, 0)
Call viVPrintf(vi, :SOUR1:POW:PORT1.CORR:COLL ASEN" + vbLf, 0)
Call viVPrintf(vi, "OPC?" + vbLf, 0)
Call vivScanf(vi, "%t", OpcRes)
" Error hnadling at power meter measurement
Call vivQueryf(vi, :SYST:ERR?" & vbLf, "%t", err)
ErrNo = Split(err, ",")
If Val(ErrNo(0)) = 0 Then
ReDim CorrData(Nop)

Call viVPrintf(vi, ":FORM:DATA ASC" + vbLf, 0)

Call viVPrintf(vi, :SOUR1:POW:PORT1:CORR:DATA?" + vbLf, 0)
Call vivVScanf(vi, "%t", Result)

Res = Split(Result, ",")

If fnLim(vi, Nop, Limit, Res) Then
MsgBox "Power meter calibration measurement is complete.”, vbOKOnly
Fori=1To Nop

Cells(i+5, 2) =i
Cells(i + 5, 3) = Res(i - 1)
Next i

Else
GoTo ReCalibration

End If

Else
MsgBox "Error", voOKOnly
GoTo ReCalibration
End If
ProgEnd:

1220

Programming

Call viClose(vi)
Call viClose(defrm)
Exit Sub
ReCalibration:
Stat = MsgBox("Do you perform the power meter calibration measurement again?", vbYesNo)
If Stat = vbYes Then
GoTo MeasStart
Else
GoTo ProgEnd
End If
End Sub
Function fnLim(vi As Long, Nop As Long, Limit As Double, Res As Variant) As Boolean
Fori=1To Nop
If Abs(Res(i - 1)) > Limit Then
Call viVPrintf(vi, "SOUR1:POW:PORT1:CORR OFF" + vbLf, 0)
MsgBox "The corrected data is out of limit!", vbOKOnly
fnLim = False
Exit Function
End If
Next i
fnLim = True

End Function
Sample Program in HT Basic (pow_cal.htb)

10 DIM Swp_type$[11],Inp_char$[9],Buff$[9],Err_mes$[50],File$[20]
20 DIM Corr_data(1:1601)

30 REAL Start_p,Stop_p,Cw_freg,Limit

40 INTEGER Nop,Pow_rang,Num_avg,Err_no,Verifier,Data_size,|
50 CLEAR SCREEN

60!

70 ASSIGN @Agte507x TO 717

80!

90 Swp_type$="POW" |Sweep type : POWER

100 Nop=41 'Number of points : 41

110 Pow_rang=0 !Power Range :-20 to +12 dBm

120 Start_p=-2.0E+1 !Start Power :-20 dBm

130 Stop_p=-1.0E+1 IStop Power :-10 dBm

140 Cw_freq=1.0E+9 ICW frequency : 1 GHz

1221

E5071C

150 Num_avg=4 INumber of averaging : 4

160 Limit=10 !limit for corrected data : 10 dBm

170!

180 ! Presetting the analyzer

190!

200 OUTPUT @Agte507x;":SYST:PRES"

210!

220 ! Setting GPIB address of the power meter to E5071C

230!

240 OUTPUT @Agte507x;":SYST:COMM:GPIB:PMET:ADDR 13"
250!

260 ! Setting measurement conditions

270!

280 OUTPUT @Agte507x;":SENS1:SWE:TYPE "&Swp_type$
290 OUTPUT @Agte507x;":SENS1:SWE:POIN ";Nop

300 OUTPUT @Agte507x;":SOUR1:POW:ATT ";Pow_rang

310 OUTPUT @Agte507x;":SOURL:POW:STAR ";Start_p

320 OUTPUT @Agte507x;":SOURL:POW:STOP ";Stop_p

330 OUTPUT @Agte507x;":SENS1:FREQ ";,Cw_freq

340!

350 PRINT "Do you perform zeroing and calibrating the power sensor?"
360 PRINT

370 INPUT "[Y/N]",Inp_char$

380 IF UPC$(Inp_char$)="Y" THEN

390 PRINT "Zero and calibrate the power sensor by using the power meter, then press [Enter] key."
400 PRINT

410 INPUT "™,Inp_char$

420 END IF

430!

440 Meas_start: !

450 !

460 ! Connecting the power sensor to the port 1 in the ENA

470!

480 OUTPUT @Agte507x;"*CLS"

490 PRINT "Set the power sensor connected to the port 1 in the ENA, then press [Enter] key."
500 PRINT

510 INPUT " ,Inp_char$

1222

Programming

520!

530 ! Performing power calibration measurement

540!

550 OUTPUT @Agte507x;":SOURL:POW:PORT1:CORR:COLL:AVER ";Num_avg
560 OUTPUT @Agte507x;":SOUR1:POW:PORT1:CORR:COLL ASEN"
570 OUTPUT @Agte507x;"*OPC?"

580 ENTER @Agte507x;Buff$

590!

600 ! Error hnadling at power meter measurement

610!

620 OUTPUT @Agte507x;":SYST:ERR?"

630 ENTER @Agte507x;Err_no,Err_mes$

640 !

650 IF Err_no=0 THEN

660 REDIM Corr_data(1:Nop)

670 OUTPUT @Agte507x;":FORM:DATA ASC"

680 OUTPUT @Agte507x;":SOURL:POW:PORT1:CORR:DATA?"

690 ENTER @Agte507x;Corr_data(*)

700 Verifier=FNLim(@Agte507x,Nop,Limit,Corr_data(*))

710 IF Verifier=-1 THEN

720 PRINT "Do you perform the power meter calibration measurement again?"
730 PRINT

740 INPUT "[Y/N]",Inp_char$

750 IF UPC$(Inp_char$)="Y" THEN GOTO Meas_start

760 IF UPC$(Inp_char$)<>"Y" THEN GOTO Prog_stop

770 END IF

780 PRINT "Power meter calibration measurement is complete.”

790 PRINT

800 ELSE

810 PRINT "Error: "&Err_mes$

820 PRINT

830 PRINT "Do you perform the power meter calibration measurement again?"
840 PRINT

850 INPUT "[Y/N]",Inp_char$

860 IF UPC$(Inp_char$)="Y" THEN GOTO Meas_start

870 IF UPC$(Inp_char$)<>"Y" THEN GOTO Prog_stop

880 END IF

1223

E5071C

890!

900 ! Installing the corrected data to a file

910!

920 File$="CORR_DATA"

930 Data_size=Nop*8

940 ON ERROR GOTO Skip_purge

950 PURGE File$

960 Skip_purge: OFF ERROR

970 PRINT "The file installing power correction data: "&File$
980 PRINT

990 CREATE File$,Data_size

1000 ASSIGN @File TO File$;FORMAT ON

1010 FOR I=1 TO Nop

1020 OUTPUT @File USING "3D,3X,MD.4DE";|,Corr_data(l)
1030 NEXT |

1040 ASSIGN @File TO *

1050!

1060 PRINT "Installing the corrected data to the file is DONE."
1070!

1080 GOTO Prog_end

1090 !

1100 Prog_stop: !

1110 PRINT "Program Interruption"

1120!

1130 Prog_end: !

1140

1150 END

1160 !

1170 ! Limit Test Function for the Corrected Data

1180!

1190 DEF FNLim(@Agte507x,INTEGER Nop,REAL Limit,REAL Corr_data(*))
1200 INTEGER |

1210!

1220 FOR I=1 TO Nop

1230 IF ABS(Corr_data(l))>Limit THEN

1240 OUTPUT @Agte507x;"SOUR1:POW:PORT1:CORR OFF"
1250 PRINT "The corrected data is out of limit!"

1224

1260 PRINT
1270 RETURN -1
1280 GOTO Fn_exit
1290 END IF
1300 NEXT |
1310!

1320 RETURN 0
1330!

1340 Fn_exit: !
1350!

1360 FNEND

Programming

1225

E5071C

Reading/Writing Error Coefficient
o Overview
« Sample Program in Excel VBA
e Sample Program in HT Basic

Other topics about Sample Programs

Overview

This sample program reads/writes the error coefficient.

This program will set measurement conditions and perform full 2-port
calibration, preset the E5071C with the read error coefficient to be written,
and then again read the error coefficient.

o The error coefficient read from the E5071C will be displayed in a
graph.
Sample Program in Excel VBA

Sub Err_Term_Click()

Dim defrm As Long 'Session to Default Resource Manager
Dim vi As Long ‘Session to instrument
Dim Ch As String

Dim CalKit As Integer
Dim Port(2) As String
Dim Result As String * 10
Dim tNop As Long

Dim Respons As String
Dim Stimulus As String
Dim ErrTerm As String

Const TimeOutTime = 40000 'timeout time.
Const Cal85032F = 4 'cal kit number

Ch =Cells(2, 6) ‘Select channel

Port(1) = Cells(4,6) 'Sets the select port 1.
Port(2) = Cells(5,6) 'Sets the select port 2.
Respons = Cells(6, 6) 'Sets the respons port.
Stimulus = Cells(7, 6) 'Sets the stimulus port.
ErrTerm = Cells(8, 6) 'Sets the error term.

CalKit = Cal85032F 'Set cal kit (85032F)

1226

Programming

Call viOpenDefaultRM(defrm) ‘Initializes the VISA system.
Call viOpen(defrm, "GPIB0::17::INSTR", 0, 0, vi) 'Opens the session to the specified instrument.

Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, TimeOutTime) 'The state of an attribute for the
specified session.

Call viVPrintf(vi, "*RST" & vbLf, 0) 'Presets the setting state of the ENA.
Call viVPrintf(vi, "*CLS" & vbLf, 0) 'Clears the all status register.

Call viVPrintf(vi, :SENS" & Ch & ":.CORR:COLL:CKIT " & CalKit & vbLf, 0) 'Select the calibration kit.

Call Set_sgm_tbl(vi, Ch) 'Configures the segment table.

Select Case Cells(3, 6) 'Sets the read/write.
Case "Read"
Call Cal_Slot(vi, Ch, 2, Port) 'Full 2-Port Calibration.
Case "Write"

Call viVPrintf(vi, :SENS" & Ch & ":CORR:COEF:METH:SOLT2 1,2" & vbLf, 0) 'Sets the
calibration type to the full 2-port calibration.

End Select

Call viVPrintf(vi, :SENS" & Ch & ":SEGM:SWE:POIN?" & vbLf, 0) 'Reads out the total number of the
measurement points of all segments.

Call vivScanf(vi, "%t", Result)

Call Exec_Error_Term(vi, Ch, Val(Result), ErrTerm, Respons, Stimulus) 'Reads the error coefficient.

Call viClose(vi) 'Closes the resource manager session.
Call viClose(defrm) 'Breaks the communication and terminates the VISA system.

End
End Sub

Sub Exec_Error_Term(vi As Long, Ch As String, Nop As Long, ErrTerm As String, Respons As String,
Stimulus As String)

Dim Error_Term_Data As Variant
Dim Freq_Data As Variant

Dim i As Integer, j As Integer
Dim SelMode As String

1227

E5071C

Dim Result As String * 10000
Dim RealData As Double
Dim ImagData As Double
Dim FregData As Double

ReDim Error_Term_Data(Nop * 2) As String 'Defines the stock variables for the error coefficient
as needed for NOP.

ReDim Freq_Data(Nop) As String 'Defines the stock variables for the frequency values.
SelMode = Cells(3, 6) 'Reads the read/write mode.

Select Case SelMode
Case "Read" 'Reads the error coefficient from the ena.

Call viVPrintf(vi, “SENS" & Ch & ":.CORR:COEF? " & ErrTerm & "," & Respons & "," & Stimulus &
vbLf, 0) 'Read the calibration coefficient data.

Call vivScanf(vi, "%t", Result)
Error_Term_Data = Split(Result, ",") 'Splits the read data by comma.

Freq_Data = Make_Freq(vi, Nop) 'Calculates the frequency values.
Fori=0ToNop-1

RealData = CDbl(Error_Term_Data(i*2)) 'Reads the real data from error coefficient items.
ImagData = CDbl(Error_Term_Data(i * 2 + 1)) 'Reads the imag data from error coefficient

items.
FreqData = CDbl(Freq_Data(i + 1)) ‘Reads the frequency values.
Cells(10 + i, 2) = RealData 'Displays the real data to the excel sheet.
Cells(10 +1, 3) = ImagData 'Displays the imag data to the excel sheet.
Cells(10 +1, 1) = FregData 'Displays the frequency values to the excel sheet.
Next i
Call Data_Plot(vi, Nop, ErrTerm) 'Displays the graph to the excel sheet.

Case "Write" "Write the error coefficient to the ena.
Error Term_Data = EnTerm & "," & Respons & "," & Stimulus ~ 'Sets the command parameter.
Fori=0ToNop-1
RealData = Cells(10 +1, 2) 'Retrieves the real data from the excel sheet.
ImagData = Cells(10 +1i, 3) ‘Retrieves the imag data from the excel sheet.

1228

Programming

Error_Term_Data = Error_Term_Data & "," & RealData & "," & ImagData 'Sets the
command parameter.

Next i

Call viVPrintf(vi, :SENS" & Ch & ":.CORR:COEF " & Error_Term_Data & vbLf, 0) 'Write the
calibration coefficient data.

Call viVPrintf(vi, :SENS" & Ch & ":CORR:COEF:SAVE" & vbLf, 0) 'Calculates the
calibration coefficients.

End Select
End Sub
Function Make_Freq(vi As Long, tPoint As Long) As Variant
Dim start_freq As Double
Dim stop_freq As Double
Dim Nop As Integer
Dim fStep As Double
Dim fPoint As Double
Dim freg_arry() As Variant
Dim MeasPoint As Integer

Const SegmentCnt = 2 'number of segment table.

ReDim freq_arry(tPoint) As Variant

MeasPoint = 1

Forj=1To SegmentCnt

start_freq=Cells(3+j-1,9) 'Sets the start frequency of segment table.
stop_freq = Cells(3 + - 1, 10) 'Sets the stop frequency of segment table.
Nop = Cells(3 +] -1, 13) 'Sets the nop of segment table.
fStep = (stop_freq - start_freq) / (Nop - 1) 'Calculate the frequency step.
fPoint = start_freq 'Sets the frequency start point.
Fori=1To Nop
freq_arry(MeasPoint) = fPoint 'Sets the frequency value.
fPoint = fPoint + fStep 'Calculate the frequency points.
MeasPoint = MeasPoint + 1 'Add to measurement points.
Next |

1229

ES5071C
Next j
Make Freq = freq_arry 'Sets the frequency data array.

End Function

Sub Data_Plot(vi As Long, Nop As Long, ErrTerm As String)
Range("B10:C" & Nop + 9 & ").Select 'Select the error coefficient.
Charts.Add
ActiveChart.ChartType = xILineStacked 'Sets the chart type.

ActiveChart.SetSourceData Source:=Sheets("Error Term").Range("A9:C" & Nop + 9 & ™) 'Sets the
error coefficient and displays the graph.

ActiveChart.Location Where:=xILocationAsObject, Name:="Error Term"

ActiveChart. Axes(xICategory).Select 'Select the formatting of X-axis.
With Selection

.TickLabelPosition = xlLow 'Displays the frequency values to low area.
End With

With ActiveChart
HasTitle = True
.ChartTitle.Characters.Text = "Error Term " & ErrTerm 'Display the title.
End With
End Sub
Sub Set_sgm_tbl(vi As Long, Ch As String)
Dim Star1(2) As Double, Stop1(2) As Double, Pow1(2) As Double, If_bw1(2) As Double
Dim Segm As Integer, Nop1(2) As Integer, Num_of_tr1 As Integer
Dim i As Integer

Segm =2

Star1(1) = Cells(3, 9) 'Sets the start frequency of segment 1 table.
Stop1(1) = Cells(3, 10) 'Sets the stop frequency of segment 1 table.
Powl(1) = Cells(3, 11) 'Sets the power of segment 1 table.
If_bwl(1) = Cells(3, 12) 'Sets the ifbw of segment 1 table.

Nop1(1) = Cells(3, 13) ‘Sets the nop of segment 1 table.

Star1(2) = Cells(4, 9) 'Sets the start frequency of segment 2 table.
Stop1(2) = Cells(4, 10) 'Sets the stop frequency of segment 2 table.
Pow1(2) = Cells(4, 11) 'Sets the power of segment 2 table.

1230

Programming

If_bwl(2) = Cells(4, 12) 'Sets the ifow of segment 2 table.
Nop1(2) = Cells(4, 13) 'Sets the nop of segment 2 table.

Call viVPrintf(vi, :SENS" & Ch & ":SWE:TYPE SEGM" & vbLf, 0) 'Sets sweep type to segment.

Call viVPrintf(vi, ":SENS" & Ch & ":SEGM:DATA 5,0,1,1,0,0," & Segm & ",", 0) 'Sets the header of
segment table.

Call viVPrintf(vi, Star1(1) & "," & Stop1(1) & "," & Nop1(1) & "," & If bwl(1) &"," & Powl(1) &",", 0)
'Sets the 1st parameter.

Call viVPrintf(vi, Star1(2) & "," & Stop1(2) & "," & Nop1(2) & "," & If bw1(2) &"," & Powl1(2) & vbLf, 0)
'Sets the 2nd parameter.

Call ErrorCheck(vi) 'Checking the error.

End Sub

Sub Cal_Slot(vi As Long, Ch As String, NumPort As String, Port() As String)
Dim Dummy
Dim i As Integer, j As Integer

Select Case NumPort
Case 1

Call viVPrintf(vi, ":SENS" & Ch & ":CORR:COLL:METH:SOLT" & NumPort & " " & Port(1) & vbLf,
0) 'Set the 1-port calibration type.

Case 2

Call viVPrintf(vi, :SENS" & Ch & ":CORR:COLL:METH:SOLT" & NumPort & " " & Port(1) & "," &
Port(2) & vbLf, 0) 'Set the full 2-port calibration type.

Case 3

Call viVPrintf(vi, ":SENS" & Ch & ":CORR:COLL:METH:SOLT" & NumPort & " " & Port(1) & "," &
Port(2) & "," & Port(3) & vbLf, 0) 'Set the full 3-port calibration type.

Case 4

Call viVPrintf(vi, :SENS" & Ch & ":.CORR:COLL:METH:SOLT4 1,2,3,4" & vbLf, 0) 'Set the full
4-port calibration type.

End Select
'Reflection
Fori=1To NumPort
MsgBox ("Set Open to Port " & Port(i) & ". then click [OK] button™) 'Display the message box.

Call viVPrintf(vi, ":.SENS" & Ch & ":.CORR:COLL:OPEN " & Port(i) & vbLf, 0) 'Measurement the
OPEN calibration.

Call vivQueryf(vi, "*OPC?" & vbLf, "%t", Dummy) 'Reads the *OPC? result.

1231

E5071C

MsgBox ("Set Short to Port " & Port(i) & ". then click [OK] button") 'Display the message box.

Call viVPrintf(vi, ":SENS" & Ch & ":.CORR:COLL:SHORT " & Port(i) & vbLf, 0) 'Measurement the
SHORT calibration.

Call vivQueryf(vi, "*OPC?" & vbLf, "%t", Dummy) 'Reads the *OPC? result.

MsgBox ("Set Load to Port " & Port(i) & ". then click [OK] button") 'Display the message box.

Call viVPrintf(vi, ":SENS" & Ch & ":.CORR:COLL:LOAD " & Port(i) & vbLf, 0) 'Measurement the
LOAD calibration.

Call vivQueryf(vi, "*OPC?" & vbLf, "%t", Dummy) 'Reads the *OPC? result.
Next i
‘Transmission
Fori=1To NumPort - 1

Forj=i+1To NumPort

MsgBox ("Set Thru to Port " & Port(i) & "&" & Port(j)) & ". then click [OK] button") 'Display the
message box.

Call viVPrintf(vi, :SENS" & Ch & ":CORR:COLL:THRU " & Port(i) & "," & Port(j) & vbLf, 0)
'‘Measurement the THRU calibration.

Call vivQueryf(vi, "*OPC?" & vbLf, "%t", Dummy) 'Reads the *OPC? result.

Call viVPrintf(vi, :.SENS" & Ch & ":.CORR:COLL:THRU " & Port(j) & "," & Port(i) & vbLf, 0)
'Measurement the THRU calibration.

Call vivQueryf(vi, "*OPC?" & vbLf, "%t", Dummy) 'Reads the *OPC? result.
Next j
Next i

Call viVPrintf(vi, “SENS" & Ch & ":.CORR:COLL:SAVE" & vbLf, 0) 'Calculating the calibration
coefficients.

Call ErrorCheck(vi) 'Checking the error.

End Sub
Sub ErrorCheck(vi As Long)
Dim err As String * 50, ErrNo As Variant, Response

Call vivQueryf(vi, :SYST:ERR?" & VbLf, "%t", err) 'Reads error message.
ErrNo = Split(err, ",") 'Gets the error code.

If Val(ErrNo(0)) <> 0 Then

Response = MsgBox(CStr(ErrNo(1)), vbOKOnly) 'Display the message box.
End If

1232

Programming

End Sub

Sample Program in HT Basic (ErrTerm.htb)

2000 Main:!

2010 INTEGER Agte507x,li,Nop

2020 INTEGER Respons,Stimulas

2030 INTEGER Port(1:2)

2040 REAL Stok(12,1:5000)

2050 REAL Stok2(12,1:5000)

2060 REAL Stok3(12,1:5000)

2070 DIM Ch$[10],Wk$[128]

2080 !

2090 ! PC's Monitor Clear

2100 CLEAR SCREEN

2110 GINIT

2130'!

2140! Set ENA++'s Addr

2150 Agte507x=717

2160 !

2170 Ch$="1"

2180'!

2190 ! Set ENA++'s I/O Path

2200 ASSIGN @Agte507x TO Agte507x
2210'!

2220 ON TIMEOUT SC(@Agte507x),15 RECOVER Tout
2230'!

2240 ! Set Start Port and End Port

2250 Port(1)=1

2260 Port(2)=2

2270'!

2280 ! Setup Segment Table

2290 CALL Set_sgm_thl(@Agte507x)
2300 !

2310 ! Select Cal Kit

2320 CALL Select_cal_kit(@Agte507x,Ch$)
2330'!

2340 ! Execute Full-2Port Calibration
2350 CALL Cal_solt(@Agte507x,Ch$,2,Port(*))

1233

E5071C

2360 !

2370 ! Get All Segment's Points

2380 CALL Get_nop(@Agte507x,Nop,Ch$)

2390 !

2400 REDIM Stok(12,1:Nop*2)

2410 REDIM Stok2(12,1:Nop*2)

2420 REDIM Stok3(12,1:Nop*2)

2430'!

2440 CALL Exec_error_term(@Agte507x,"READ","ES",Ch$,1,Nop,1,1,Stok(*))

2450 CALL Exec_error_term(@Agte507x,"READ","ES",Ch$,2,Nop,2,2,Stok(*))

2460 CALL Exec_error_term(@Agte507x,"READ","ER",Ch$,3,Nop,1,1,Stok(*))

2470 CALL Exec_error_term(@Agte507x,"READ","ER",Ch$,4,Nop,2,2,Stok(*))

2480 CALL Exec_error_term(@Agte507x,"READ","ED",Ch$,5,Nop,1,1,Stok(*))

2490 CALL Exec_error_term(@Agte507x,"READ","ED",Ch$,6,Nop,2,2,Stok(*))

2500 !

2510 CALL Exec_error_term(@Agte507x,"READ","EL",Ch$,7,Nop,1,2,Stok(*))

2520 CALL Exec_error_term(@Agte507x,"READ","EL",Ch$,8,Nop,2,1,Stok(*))

2530 CALL Exec_error_term(@Agte507x,"READ","ET",Ch$,9,Nop,1,2,Stok(*))

2540 CALL Exec_error_term(@Agte507x,"READ","ET",Ch$,10,Nop,2,1,Stok(*))

2550!

2560 CLEAR SCREEN

2570 PRINT "Push [Preset] - OK of ENA. Then push [Enter] key."

2580 INPUT " \Wk$

2590 !

2600 CALL Set_sgm_thl(@Agte507x)

2610'!

2620 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COEF:METH:SOLT2 ";Port(1);",":Port(2)
2630 !

2640 CALL Exec_error_term(@Agte507x,"WRITE","ES",Ch$,1,Nop,1,1,Stok(*)
2650 CALL Exec_error_term(@Agte507x,"WRITE","ES",Ch$,2,Nop,2,2,Stok(*)
2660 CALL Exec_error_term(@Agte507x,"WRITE","ER",Ch$,3,Nop,1,1,Stok(*)
2670 CALL Exec_error_term(@Agte507x,"WRITE","ER",Ch$,4,Nop,2,2,Stok(*)
2680 CALL Exec_error_term(@Agte507x,"WRITE","ED",Ch$,5,Nop,1,1,Stok(*)
2690 CALL Exec_error_term(@Agte507x,"WRITE","ED",Ch$,6,Nop,2,2,Stok(*)
2700 !

2710 CALL Exec_error_term(@Agte507x,"WRITE","EL",Ch$,7,Nop,1,2,Stok(*))
2720 CALL Exec_error_term(@Agte507x,"WRITE","EL",Ch$,8,Nop,2,1,Stok(*))

1234

Programming

2730 CALL Exec_error_term(@Agte507x,"WRITE","ET",Ch$,9,Nop,1,2,Stok(*))

2740 CALL Exec_error_term(@Agte507x,"WRITE","ET",Ch$,10,Nop,2,1,Stok(*))
2750!

2760 OUTPUT @Agte507x;":SENS"&Ch$&":.CORR:COEF:SAVE"

2770'!

2780 CALL Exec_error_term(@Agte507x,"READ","ES",Ch$,1,Nop,1,1,Stok2(*))

2790 CALL Exec_error_term(@Agte507x,"READ","ES",Ch$,2,Nop,2,2,Stok2(¥)
2800 CALL Exec_error_term(@Agte507x,"READ","ER",Ch$,3,Nop,1,1,Stok2(*)
2810 CALL Exec_error_term(@Agte507x,"READ","ER",Ch$,4,Nop,2,2,Stok2(*)
2820 CALL Exec_error_term(@Agte507x,"READ","ED",Ch$,5,Nop,1,1,Stok2(*)
2830 CALL Exec_error_term(@Agte507x,"READ","ED",Ch$,6,Nop,2,2,Stok2(*)
2840!

2850 CALL Exec_error_term(@Agte507x,"READ","EL",Ch$,7,Nop,1,2,Stok2(*)
2860 CALL Exec_error_term(@Agte507x,"READ","EL",Ch$,8,Nop,2,1,Stok2(*
(
(

)
)
)
)
)

)
)

2870 CALL Exec_error_term(@Agte507x,"READ","ET",Ch$,9,Nop,1,2,Stok2(*))

2880 CALL Exec_error_term(@Agte507x,"READ","ET",Ch$,10,Nop,2,1,Stok2(*))

2890 !

2900 ASSIGN @Agte507x TO *

2910'!

2920 DISP CHR$(139)&" Done ..."&CHR$(136)

2930 STOP

2940 !

2950 Tout: OFF TIMEOUT SC(@Agte507x)

2960 !

2970 ASSIGN @Agte507x TO *

2980 !

2990 PRINT CHR$(137)&" ENA Timeout ..."&CHR$(136)

3000 END

3010!

3020 Set_sgm_tbl: SUB Set_sgm_thl(@Agte507x)

3030 REAL Star1(1:2),Stop1(1:2),Pow1(1:2)

3040 INTEGER Segm,Nop1(1:2),Num_of trl

3050 INTEGER |

3060 !

3070 CLEAR SCREEN

3080 DISP CHR$(138)&" Wait ..."&CHR$(136)

3090 !

1235

E5071C

3100 Segm=2 ! Number of Segment Ch.1: 2

3110 Star1(1)=3.E+6 ! Start Frequency Ch.1 Segm.1: 3.0 MHz
3120 Star1(2)=5.0E+7 ! Segm.2: 50.0 MHz

3130 Stop1(1)=1.0E+7 ! Stop Frequency Ch.1 Segm.1: 10.0 MHz
3140 Stop1(2)=8.E+9 ! Segm.2: 8.0 GHz

3150 Nop1(1)=2 ! Number Ch.1 Segm.1: 2

3160 Nop1(2)=170! of Points Segm.2: 170

3170 If_bw1(1)=7.0E+4 ! IF Bandwidth Ch.1 Segm.1: 70 kHz
3180 If_bw1(2)=7.0E+4 ! Segm.2: 70 kHz

3190 Pow1(1)=0! Power Ch.1 Segm.1: 0 dBm

3200 Pow1(2)=0! Segm.2: 0 dBm

3210!

3220 OUTPUT @Agte507x;":SYST:PRES"

3230!

3240 WAIT 5

3250 !

3260 ! Channel 1

3270'!

3280 OUTPUT @Agte507x;":SENS1:SWE:TYPE SEGM"

3290 OUTPUT @Agte507x;":SENS1:SEGM:DATA 5,0,1,1,0,0,";Segm;",";
3300 FOR 1=1 TO Segm-1

3310 OUTPUT @Agte507x;Star1(l);",";Stop1(l);",";Nop1(I);",";If_bw1(1);",";Powl1(1);",";
3320 NEXT |

3330 OUTPUT
@Agte507x;Starl(Segm);",";Stop1(Segm);",":Nop1(Segm);",";If_bwl(Segm);",";Powl(Segm)

3340'!

3350 OUTPUT @Agte507x;":CALC1:PAR:COUN ";Num_of trl
3360 FOR I=1 TO Num_of trl

3370 OUTPUT @Agte507x;":CALC1:PAR"&VAL$()&": SEL"
3380 NEXT |

3390 SUBEND

3400!

3410 Select_cal_kit: SUB Select_cal_kit(@Agte507x,Ch$)
3420'!
3430 ! Calibration Kit Selection Function
3440'!
3450 !

1236

3460 DIM Cal_kit_Ibl$(1:10)[20],Inp_char$[9]

3470 DIM Msg$[80],Wk$[10]

3480 INTEGER Cal_kit,I,Noc

3490 !

3500 ! PC's Monitor Clear

3510 CLEAR SCREEN

3520 !

3530 ! Number of Cal Kid

3540 Noc=10

3550!

3560 FOR 1=1 TO Noc

3570 OUTPUT @Agte507x;":SENS1:CORR:COLL:CKIT "l
3580 OUTPUT @Agte507x;":SENS1:CORR:COLL:CKIT:LAB?"
3590 ENTER @Agte507x;Cal_kit_Ibl$(1)

3600 NEXT |

3610 ON ERROR GOTO Kit_select

3620 !

3630 PRINT "## Calibration Kit Selection ##"

3640 FOR 1=1 TO Noc

3650 PRINT USING "X,2D,A,X,20A"1,"" Cal_kit_Ibl$(1)
3660 NEXT |

3670 PRINT ™

3680 PRINT "Input 1 to "&VAL$(Noc)

3690 !

3700 Msg$="Input number? (1 to "&VAL$(Noc)&") "
3710 LOOP

3720 LOOP

3730 DISP Msg$;

3740 INPUT Inp_char$

3750 Cal_kit=IVAL(Inp_char$,10)

3760 EXIT IF 1<=Cal_kit AND Cal_kit<=Noc

3770 Kit_select:!

3780 BEEP

3790 END LOOP

3800!

3810 Wk$=""

3820 PRINT TABXY(1,Cal_kit+1);

Programming

1237

E5071C

3830 PRINT USING "X,B,2D,A,X,20A,B";139,Cal_kit,":",Cal_kit_Ibl$(Cal_kit),136

3840 INPUT "Sure ? [Y/N]",Wk$

3850 EXIT IF (UPC$(WKS$)="Y")

3860 PRINT TABXY/(1,Cal_kit+1);

3870 PRINT USING "X,2D,A,X,20A";Cal_kit,":",Cal_kit_IbI$(Cal_kit)

3880 BEEP

3890 BEEP

3900 END LOOP

3910 OFF ERROR

3920 !

3930 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:CKIT ";Cal_kit

3940 SUBEND

3950!

3960 Cal_solt: SUB Cal_solt(@Agte507x,Ch$,INTEGER Num_of ports,INTEGER Port(*))
3970'!
3980 ! Full n Port Calibration Function
3990 !
4000 !
4010 DIM Buff$[9]

4020 INTEGER I,

4030 !

4040 ! PC's Monitor Clear

4050 CLEAR SCREEN

4060 !

4070 PRINT "## Full "& VAL$(Num_of_ports)&" Port Calibration ##"
4080 !

4090 ! Calibration Type Selection

4100!

4110 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:METH:SOLT"&VAL$(Num_of_ports)&" ";

4120 FOR 1=1 TO Num_of_ports-1

4130 OUTPUT @Agte507x;Port(1);",";

4140 NEXT |

4150 OUTPUT @Agte507x;Port(Num_of_ports)
4160 !

4170 ! Reflection Measurement

4180 !

4190 FOR =1 TO Num_of_ports

1238

Programming

4200 PRINT "Set OPEN to Port "&VAL$(Port(l))&". Then push [Enter] key."
4210 INPUT " Buff$

4220 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:OPEN ";Port(l)
4230 OUTPUT @Agte507x;"*OPC?"

4240 ENTER @Agte507x;Buff$

4250 PRINT "Set SHORT to Port "&VAL$(Port(l))&". Then push [Enter] key."
4260 INPUT " Buff$

4270 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:SHOR ";Port(l)
4280 OUTPUT @Agte507x;"™*OPC?"

4290 ENTER @Agte507x;Buff$

4300 PRINT "Set LOAD to Port "&VAL$(Port(l))&". Then push [Enter] key."
4310 INPUT " Buff$

4320 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:LOAD ";Port(l)
4330 OUTPUT @Agte507x;"*OPC?"

4340 ENTER @Agte507x;Buff$

4350 NEXT |

4360 !

4370 ! Transmission Measurement

4380 !

4390 FOR 1=1 TO Num_of_ports-1

4400 FOR J=I+1 TO Num_of ports

4410 PRINT "Set THRU between Port "&VAL$(Port(1))&" and Port "&VAL$(Port(J))&". Then push [Enter]
key."

4420 INPUT " Buff$

4430 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:THRU ";Port(1);",";Port(J)
4440 OUTPUT @Agte507x;"*OPC?"

4450 ENTER @Agte507x;Buff$

4460 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COLL:THRU ";Port(J);",";Port(1)
4470 OUTPUT @Agte507x;"*OPC?"

4480 ENTER @Agte507x;Buff$

4490 NEXT J

4500 NEXT |

4510

4520 ! Done

4530 !

4540 OUTPUT @Agte507x;":SENS"&Ch$&":.CORR:COLL:SAVE"

4550 PRINT "Done"

1239

E5071C

4560 SUBEND

4570!

4580 Get_nop: SUB Get_nop(@Agte507x,INTEGER Nop,Ch$)
4590 ! Get All Segment's Points

4600 OUTPUT @Agte507x;":SENS"&Ch$&":SEGM:SWE:POIN?"
4610 ENTER @Agte507x;Nop

4620 SUBEND

4630 Exec_error_term: SUB Exec_error_term(@Agte507x,Rw$,1d$,Ch$,INTEGER
Idx,Nop,Respons,Stimulas,REAL Stok(*))

4640 INTEGER i

4650 REAL Error_term_data(1:5000)

4660 !

4670 DISP CHR$(138)&" Wait ..."& CHR$(136)
4680 !

4690 REDIM Error_term_data(1:Nop*2)
4700 !

4710 SELECT Rw$

4720 CASE "WRITE"

4730 FOR 1i=1 TO Nop

4740 Error_term_data(2*li-1)=Stok(ldx,2*li-1)
4750 Error_term_data(2*1i)=Stok(ldx,2*1i)
4760 NEXT i

47701

4780 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COEF
"&ld$&",";Respons;",";Stimulas;",";Error_term_data(*)

4790 !

4800 CASE "READ"

4810 FOR 1i=1 TO Nop

4820 Error_term_data(2*1i-1)=-999

4830 Error_term_data(2*1i)=-999

4840 NEXT li

4850 !

4860 OUTPUT @Agte507x;":SENS"&Ch$&":CORR:COEF? "&Id$&",";Respons;",";Stimulas
4870 ENTER @Agte507x;Error_term_data(*)

4880 !

4890 CALL Data_plot(Id$,Respons,Stimulas,Nop,Error_term_data(*))
4900 !

4910 FOR li=1 TO Nop

1240

Programming

4920 Stok(ldx,2*1i-1)=Error_term_data(2*li-1)
4930 Stok(ldx,2*li))=Error_term_data(2*1i)
4940 NEXT li

4950 !

4960 END SELECT

4970 SUBEND

4980!

4990 Data_plot: SUB Data_plot(Error_term$,INTEGER Respons,Stimulas,Nop,REAL
Error_term_data(*))

5000 INTEGER li,Pen(1:2)

5010 REAL Y_minmax(1:2)

5020 DIM Wk$[20]

5030'!

5040 CLEAR SCREEN

5050 GINIT

5060 GCLEAR

5070'!

5080 Pen(1)=3

5090 Pen(2)=4

5100!

5110! Get Min Value and Max Value from all data
5120 Y_minmax(1)=MIN(Error_term_data(*))
5130 Y_minmax(2)=MAX(Error_term_data(*))
5150!

5160 IF (Y_minmax(1)=Y_minmax(2)) AND (Y_minmax(1)=0) THEN
5170 Y_minmax(1)=1

5180 Y_minmax(2)=-1

5190 ELSE

5200 IF (Y_minmax(1)=Y_minmax(2)) THEN
5210 Y_minmax(1)=Y_minmax(1)*.5

5220 Y_minmax(2)=Y_minmax(2)*1.5

5230 END IF

5240 END IF

5250 !

5260 VIEWPORT 25*RATIO,80*RATIO,40,90
5270 WINDOW 1,Nop,Y_minmax(1),Y_minmax(2)
5280 FRAME

1241

E5071C

5290!

5300 VIEWPORT 80*RATIO,100*RATIO,40,90
5310 WINDOW 0,2,0,2

5320 PEN Pen(1)

5330 CSIZE 2.5

5340 LORG 2

5350 MOVE .2,1.5

5360 DRAW .4,1.5

5370 MOVE .5,1.5

5380 PEN 1

5390 LABEL ":Real Value"

5400!

5410 PEN Pen(2)

5420 MOVE .2,1

5430 DRAW 4,1

5440 MOVE 5,1

5450 PEN 1

5460 LABEL ":Image Value"

5470 !

5480 VIEWPORT 25*RATIO,80*RATIO,90,100
5490 WINDOW 0,2,0,2

5500 CSIZE 3

5510 LORG 5

5520 MOVE 1,1.2

5530 LABEL "Error Term:"&Error_term$
5540 !

5550 MOVE 1,.5

5560 LABEL "Respons Port:"&VAL$(Respons)&" Stimulas Port:"&VAL$(Stimulas)
5570!

5580 VIEWPORT 0,25*RATIO,40,90
5590 WINDOW 0,2,0,2

5600 CLIP -10,10,-10,10

5610 LORG 8

5620 CSIZE 3

5630 !

5640 MOVE 1.9,0

5650 LABEL VAL$(Y_minmax(1))

1242

5660 MOVE 1.9,2

5670 LABEL VAL$(Y_minmax(2))

5680 !

5690 VIEWPORT 25*RATIO,80*RATIO,30,40
5700 WINDOW 0,2,0,2

5710 CLIP -10,10,-10,10

5720 LORG 5

5730 MOVE 0,1.5

5740 LABEL VAL$(1)

5750 MOVE 2,1.5

5760 LABEL VAL$(Nop)

5770!

5780 VIEWPORT 25*RATIO,80*RATIO,40,90

5790 WINDOW 1,Nop,Y_minmax(1),Y_minmax(2)

5800 FOR 1i=2 TO Nop

5820 PEN Pen(1)

5830 MOVE li-1,Error_term_data(2*(li-1)-1)
5840 DRAW li,Error_term_data(2*1i-1)
5860 !

5870 PEN Pen(2)

5880 MOVE li-1,Error_term_data(2*(li-1))
5890 DRAW li,Error_term_data(2*i)
5900 NEXT li

5910'!

5920 PEN 1

5930 BEEP

5940 INPUT "Cont:push [Enter] key",Wk$
5950 SUBEND

5960!

Programming

1243

E5071C

Waiting for Trigger (OPC?)
o Overview
« Sample Program in Excel VBA
e Sample Program in HT Basic

Other topics about Sample Programs

Overview
This sample program demonstrates how to use the :TRIG:SING command to
wait until the measurement cycle is completed.

e This sample program correctly runs when the maximum number
of channels/traces is set to 9 channels/9 traces.

The sample program uses the :TRIG:SING command to start a sweep
(measurement) cycle, uses the *OPC command to wait until the
measurement cycle is completed, then prints a message and exits.

See Waiting for the End of Measurement for this programming.
Sample Program in Excel VBA

Sub trg_sing_Click()
Dim defrm As Long
Dim vi As Long
Dim ContMode(9) As String
Dim Result As String * 10
Dim i As Integer
Const TimeOutTime = 100000 ' TimeOut time should be greater than the measurement time.

" Assign a GPIB address to the I/0 pass.
Call viOpenDefaultRM(defrm)
Call viOpen(defrm, "GPIB0::17::INSTR", 0, 0, vi)
Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, TimeOutTime)
' Store the settings of continuous initiation mode for eachchannel
' (on for channels 1 and 2; off for channels 3 through 9)
"into the array variable ContMode().
ContMode(1) = "ON"
ContMode(2) = "ON"
Fori=3To9
ContMode(i) = "OFF"
Next i

1244

Programming

" Turn on or off continuous initiation mode for each channel
' depending on the value of ContMode(*).
Fori=1To9
Call viVPrintf(vi, "INIT" & CStr(i) & ":.CONT " & ContMode(i) & vbLf, 0)
Next i
' Set the trigger source to Bus Trigger.
Call viVPrintf(vi, . TRIG:SOUR BUS" & vbLf, 0)
' Trigger the instrument to start a sweep cycle.
Call viVPrintf(vi, " TRIG:SING" & VbLf, 0)
' Execute the *OPC? command and wait until the command
‘returns 1 (i.e., the measurement cycle is completed).
Call viVPrintf(vi, "*OPC?" & vbLf, 0)
Call vivVScanf(vi, "%t", Result)
' Display a measurement completion message.
Stat = MsgBox("Measurement complete”, vbOKOnly)
Call viClose(vi)
Call viClose(defrm)

End Sub
Sample Program in HT Basic (trg_sing.htb)

10 DIM Cont_mode$(1:9)[9],Buff$[9]
20 INTEGER |
30!
40 ASSIGN @Agte507x TO 717
50!
60 Cont_mode$(1)="ON"
70 Cont_mode$(2)="ON"
80 Cont_mode$(3)="OFF"
90 Cont_mode$(4)="OFF"
100 Cont_mode$(5)="OFF"
110 Cont_mode$(6)="OFF"
120 Cont_mode$(7)="OFF"
(8)
(9)=

130 Cont_mode$(8)="OFF"
140 Cont_mode$(9)="OFF"

1245

E5071C

150!

160 FOR I=1 TO 9

170 OUTPUT @Agte507x;"INIT"&VALS$(1)&":CONT "&Cont_mode$(l)
180 NEXT |

190 OUTPUT @Agte507x;"TRIG:SOUR BUS"
200!

210 OUTPUT @Agte507x;": TRIG:SING"

220 OUTPUT @Agte507x;"*OPC?"

230 ENTER @Agte507x;Buff$

240!

250 PRINT "Measurement complete”

260 END

1246

Programming

Waiting for Trigger (SRQ)
« Overview
 Sample Program in Excel VBA
 Sample Program in HT Basic

Other topics about Sample Programs

Overview

This sample program demonstrates how to use an SRQ to detect the end of
measurement.

e This sample program correctly runs when the maximum number
of channels/traces is set to 9 channels/9 traces.

The sample program sets up the trigger system, configures the instrument
to properly generate an SRQ, and then triggers the instrument. When the

instrument has generated an SRQ that indicates the end of measurement,
the program exits after printing a measurement completion message.

See Waiting for the End of Measurement for this programming.
Sample Program in Excel VBA

Sub srg_meas_Click()
Dim defrm As Long
Dim vi As Long
Dim ContMode(9) As String
Dim Result As String * 10
Dim i As Integer, SthStatus As Integer
Const TimeOutTime = 100000 ' TimeOut time should be greater than the measurement time.

" Assign a GPIB address to the I/0 pass.
Call viOpenDefaultRM(defrm)
Call viOpen(defrm, "GPIB0::17::INSTR", 0, 0, vi)
Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, TimeOutTime)
' Store the settings of continuous initiation mode for eachchannel
' (on for channels 1 and 2; off for channels 3 through 9)
"into the array variable ContMode().
ContMode(1) = "ON"
ContMode(2) = "ON"
Fori=3To9
ContMode(i) = "OFF"

1247

E5071C

Next i
" Turn on or off continuous initiation mode for each channel
" depending on the value of ContMode(*).
Fori=1To9
Call viVPrintf(vi, :INIT" & CStr(i) & :CONT " & ContMode(i) & vbLf, 0)
Next i
' Set the trigger source to Bus Trigger.
Call viVPrintf(vi, . TRIG:SOUR BUS" & vbLf, 0)

Call viVPrintf(vi, :.STAT:OPER:PTR 0" & vbLf, 0) 'Set 0 at all bits of Position Transition Filter
Call viVPrintf(vi, :STAT:OPER:NTR 16" & vbLf, 0) 'Set 1 at bit 4 of Negative Transition Filter
Call viVPrintf(vi, :STAT:OPER:ENAB 16" & vbLf, 0) 'Set 1 at bit 4 of Operation status enable
Call viVPrintf(vi, "*SRE 128" & vbLf, 0) 'Set 1 at bit 7 of Service Request Enable Register
Call viVPrintf(vi, "*CLS" & vbLf, 0) ' Clear Register.

Call viVPrintf(vi, *TRG" & vbLf, 0) 'Make a trigger

" Wait until Status Byte Register became 192

Do
Call viReadSTB(vi, StbStatus) ' Read Status Byte Register
Range("B5").Value = StbStatus

Loop Until StbStatus = 192

' Display a measurement completion message.

Stat = MsgBox("Measurement complete”, voOKOnly)

' Close 10

Call viClose(vi)

Call viClose(defrm)

End Sub

Sample Program in HT Basic (srq_meas.htb)

10 DIM Cont_mode$(1:9)[9],Buff$[9]
20 INTEGER |

30!

40 ASSIGN @Agte507x TO 717
50!

1248

Programming

60 Cont_mode$(1)=
70 Cont_mode$(2)="ON"
80 Cont_mode$(3)="OFF"
90 Cont_mode$(4)="OFF"
100 Cont_mode$(5)="OFF"
110 Cont_mode$(6)="OFF"
120 Cont_mode$(7)="OFF"
(8)=
(9)=

"ON"

130 Cont_mode$(8)="OFF"
140 Cont_mode$(9)="OFF"

150!

160 FOR I=1 TO 9

170 OUTPUT @Agte507x;"INIT"&VALS$(1)&":CONT "&Cont_mode$(l)
180 NEXT |

190 OUTPUT @Agte507x;":TRIG:SOUR BUS"
200!

210 OUTPUT @Agte507x;":STAT.:OPER:PTR 0"
220 OUTPUT @Agte507x;":STAT:OPER:NTR 16"
230 OUTPUT @Agte507x;":STAT:OPER:ENAB 16"
240 OUTPUT @Agte507x;"*SRE 128"

250 OUTPUT @Agte507x;"*CLS"

260 OUTPUT @Agte507x;"*OPC?"

270 ENTER @Agte507x;Buff$

280!

290 ON INTR 7 GOTO Meas_end

300 ENABLE INTR 7;2

310 OUTPUT @Agte507x;"*TRG"

320 PRINT "Waiting..."

330 Meas_wait: GOTO Meas_wait

340 Meas_end: OFF INTR 7

350 PRINT "Measurement Complete"

360 END

Description

Line 40
Assigns a GPIB address to the I/O pass.
Lines 60 to 140

1249

E5071C

These lines store the settings of continuous initiation mode for each
channel (on for channels 1 and 2; off for channels 3 through 9) into the
array variable Cont_mode$(*).

Lines 160 to 180

These lines turn on or off continuous initiation mode for each channel
depending on the value of Cont_mode$(*).

Line 190
Sets the trigger source to "Bus Trigger".
Lines 210 to 220

These lines configure the instrument so that operation status event
register's bit 4 is set to 1 only when the operation status condition
register's bit 4 is changed from 1 to 0 (negative transition).

Lines 230 to 240

These lines enable the operation status event register's bit 4 and status
byte register's bit 7.

Lines 250 to 270

These lines clear the status byte register and operation status event
register.

Lines 290 to 300

These lines set the branch target for an SRQ interrupt to enable SRQ
interruptions.

Lines 310 to 320

These lines trigger the instrument and wait until the measurement cycle
finishes.

Line 350
Displays a measurement completion message.

1250

Programming

Error Detection (SRQ)
e« Overview
« Sample Program in HT Basic

Other topics about Sample Programs

Overview

This sample program demonstrates how to use an SRQ to detect the
occurrence of an error.

This program sets SRQs and then intentionally sends an invalid parameter
to generate an error to be handled by this program. In the error handling
part, this program examines the error, displays the error number and error
message, and then displays the message indicating the suspension of the
program. See Detecting Occurrence of an Error for this programming.

 The sequence interception by an error can not be performed on
Excel VBA.

Sample Program in HT Basic (srq_err.bas)

10 DIM Buff$[9],Err_mes$[50]

20 INTEGER Err_no

30!

40 ASSIGN @Agte507x TO 717

50!

60 OUTPUT @Agte507x;"*ESE 60"

70 OUTPUT @Agte507x;"*SRE 32"

80 OUTPUT @Agte507x;"*CLS"

90 OUTPUT @Agte507x;"*OPC?"

100 ENTER @Agte507x;Buff$

110!

120 ON INTR 7 GOTO Err_proc

130 ENABLE INTR 7;2

140 OUTPUT @Agte507x;":CALC1:PAR:COUN 2"
150 PRINT "Trace 1 Meas.Para: S21"

160 PRINT "Trace 1 Format : Log Mag"

170 OUTPUT @Agte507x;":CALC1:PARL.DEF S21"
180 OUTPUT @Agte507x;":CALC1:PARL:SEL"
190 OUTPUT @Agte507x;":CALC1:FORM MLOG"
200 PRINT "Trace 2 Meas.Para: S11"

210 PRINT "Trace 2 Format : Log Mag"

220 OUTPUT @Agte507x;":CALC1:PAR2:DEF S11"

1251

E5071C

230 OUTPUT @Agte507x;":CALC1:PAR2:SEL"
240 OUTPUT @Agte507x;":CALC1:FORM LOG"
250 OUTPUT @Agte507x;"*OPC?"

260 ENTER @Agte507x;Buff$

270 GOTO Skip_err_proc

280 Err_proc: OFF INTR 7

290 OUTPUT @Agte507x;";:SYST:ERR?"

300 ENTER @Agte507x;Err_no,Err_mes$

310 PRINT "Error occurred!!"

320 PRINT " No:";Err_no,"Description: "&Err_mes$
330 PRINT "PROGRAM INTERRUPT!!"

340 GOTO Prog_end

350 Skip_err_proc: PRINT "PROGRAM DONE."
360 Prog_end: END

Description

Line 40
Assigns a GPIB address to the I/O pass.
Lines 60 to 70

These lines enable bits 2, 3, 4 and 5 in the standard event status register
and set bit 5 to 1 in the service request enable register.

Lines 80 to 100

These lines clear the status byte register, the standard event status
register, and the error queue.

Lines 120 to 130

These lines set the branch target for an SRQ interrupt to enable SRQ
interruptions.

Lines 140 to 260

These lines set the measurement parameters and their data formats for
traces 1 and 2. An invalid parameter is given to the data format setting for
trace 2, causing an error.

Lines 280 to 330
These lines define an error handler in the following way.

Lines 290 to 300: These lines retrieve the error number and error
messages for the error from the error queue.

1252

Programming

Lines 310 to 330 These lines display the message indicating the occurrence
of the error, the error number, the error message, and the message
showing that the program is suspended.

Line 350

Displays a closing message. Note that this message will not display unless
this program is re-executed after setting a corrected parameter to the data
format setting for trace 2.

1253

E5071C

Reading Data in ASCII Format
o Overview
« Sample Program in Excel VBA
e Sample Program in HT Basic

Other topics about Sample Programs

Overview
This sample program demonstrates how to retrieve formatted data arrays
in the ASCII transfer format.

This program holds the sweep on channel 1, then retrieves and displays
the stimulus array for channel 1 and the formatted data array for trace 1.

See Retrieving Measurement Results for this programming.
Sample Program in Excel VBA

Sub read_asc_Click()
Dim defrm As Long
Dim vi As Long
Dim Result As String * 10000
Dim Res As Variant
Dim Res2 As Variant
Dim Nop As Long
Const TimeOutTime = 10000
' Open the Analyzer
Call viOpenDefaultRM(defrm)
Call viOpen(defrm, "GPIB0::17::INSTR", 0, 0, vi)
Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, TimeOutTime)
' Select Parameter 1
Call viVPrintf(vi, :CALC1:PAR1:SEL" + vbLf, 0)
Call viVPrintf(vi, ":INIT1:CONT OFF" + vbLf, 0)
Call viVPrintf(vi, ":ABOR" + vbLf, 0)

' Read out NOP Data in ASCI| transfer format
Call viVPrintf(vi, ":SENS1:SWE:POIN?" + vbLf, 0)
Call vivScanf(vi, "%t", Result)

Nop = Val(Result)

ReDim FMTData(Nop, 2)

1254

Programming

ReDim Freq(Nop)

'Read out Measurement Data in ASCII transfer format
Call viVPrintf(vi, ":FORM:DATA ASC" + vbLf, 0)

Call viVPrintf(vi, :CALC1:DATA:FDAT?" + vbLf, 0)
Call vivScanf(vi, "%t", Result)

Res = Split(Result, ",")

Range("A6:D1607").Clear 'Clear cells of Excel
" Write data in cells of Excel
j=0
Fori=1To Nop
Cells(i +5, 1) =i
Cells(i + 5, 3) = Val(Res()))
Cells(i + 5, 4) = Val(Res(j + 1))
j=j+2
Next i

'Read out Measurement Frequency Data in ASCII transfer format
Result ="
Call viVPrintf(vi, “SENS1:FREQ:DATA?" + vbLf, 0)
Call vivScanf(vi, "%t", Result)
Res2 = Split(Result, ",")
" Write data in cells of Excel
Fori=1To Nop
Cells(i + 5, 2) = Val(Res2(i - 1))
Next i

' Close the Analyzer

Call viClose(vi)

Call viClose(defrm)
End Sub

Sample Program in HT Basic (read_asc.htb)

10 REAL Fdata(1:1601,1:2),Freq(1:1601)

1255

E5071C

20 DIM Img$[30]

30 INTEGER Nop,|

40!

50 ASSIGN @Agte507x TO 717

60!

70 OUTPUT @Agte507x;":CALC1:PARL:SEL"
80 OUTPUT @Agte507x;":INIT1:CONT OFF"

90 OUTPUT @Agte507x;":ABOR"

100 OUTPUT @Agte507x;":SENS1:SWE:POIN?"

110 ENTER @Agte507x;Nop

120 REDIM Fdata(1:Nop,1:2),Freq(1:Nop)
130!

140 ! Reading out in ASCII transfer format
150!

160 OUTPUT @Agte507x;":FORM:DATA ASC"
170!

180 OUTPUT @Agte507x;":CALC1:DATA:FDAT?"
190 ENTER @Agte507x;Fdata(*)

200 OUTPUT @Agte507x;":SENS1:FREQ:DATA?"
210 ENTER @Agte507x;Freq(*)

220!

230 ! Displaying

240!

250 OUTPUT @Agte507x;":CALC1:FORM?"

260 ENTER @Agte507x;Fmt$

270 SELECT Fmt$

280 CASE "MLOG","PHAS","GDEL","MLIN","SWR","REAL","IMAG","UPH"
290 Img$="MD.4DE,2X,MD.6DE"

300 PRINT " Frequency Data"

310 FOR I=1 TO Nop

320 PRINT USING Img$;Freq(l),Fdata(l,1)

330 NEXT |

340 CASE ELSE

350 Img$="MD.4DE,2X,MD.6DE,2X,MD.6DE"

360 PRINT " Frequency Datal Data2"

370 FOR I=1 TO Nop

380 PRINT USING Img$;Freq(l),Fdata(l,1),Fdata(l,2)

1256

Programming

390 NEXT |

400 END SELECT
410!

420 END

1257

E5071C

Reading Data in Binary Format
o Overview
« Sample Program in Excel VBA
e Sample Program in HT Basic

Other topics about Sample Programs

Overview
This sample program demonstrates how to retrieve formatted data arrays
in the Binary transfer format.

This program holds the sweep on channel 1, then retrieves and displays
the stimulus array.

See Retrieving Measurement Results for this programming.
Sample Program in Excel VBA

Sub read_bin_Click()
Dim defrm As Long
Dim vi As Long
Dim Result As String * 10000
Dim Res() As Double
Dim Nop As Long
Const TimeOutTime = 10000
' Open Analyzer
Call viOpenDefaultRM(defrm)
Call viOpen(defrm, "GPIB0::17::INSTR", 0, 0, vi)
Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, TimeOutTime)
Call viVPrintf(vi, :CALC1:PAR1:SEL" + vbLf, 0)
Call viVPrintf(vi, ":INIT1:CONT OFF" + vbLf, 0)
Call viVPrintf(vi, ":ABOR" + vbLf, 0)
' Reading out Measurement Frequency Data in Binary transfer format
Call viVPrintf(vi, ":FORM:DATA REAL" + vbLf, 0)
Call viVPrintf(vi, :CALC1:DATA:FDAT?" + vbLf, 0)
Call Scpi_read_binary_double_array(vi, Res, Nop)

"Write data in cells of Excel

Range("A6:D1607").Clear
Fori=0ToNop-1
j=iMod 2

1258

Programming

k=i\2
Cells(k + 6,] + 3).Value = Res(i)
Next i
'Read out Measurement Frequency Data in Binary transfer format
Call viVPrintf(vi, “SENS1:FREQ:DATA?" + vbLf, 0)
Call Scpi_read_binary_double_array(vi, Res, Nop)
" Write data in cells of Excel
Fori=0ToNop-1
Cells(i+6,1)=i+1
Cells(i + 6, 2).Value = Res(i)
Next i
' Close
Call viClose(vi)
Call viClose(defrm)
End Sub

' BinaryAry Read Subroutine

Sub Scpi_read_binary_double_array(vi As Long, data() As Double, Nop As Long)
Dim dblArray(10000) As Double
Dim paramsArray(3) As Long
Dim err As Long
Dim i As Long
Dim If_eoi As String * 1

Nop = UBound(dblArray) - LBound(dblArray) + 1
paramsArray(0) = VarPtr(Nop)

paramsArray(1) = VarPtr(dblArray(0))

err = viVScanf(vi, "%#Zb%1t", paramsArray(0))
If err <> 0 Then MsgBox "Binary Error"

ReDim data(Nop - 1)
Fori=0ToNop-1

data(i) = dblArray(i)
Next

1259

E5071C

End Sub

Sample Program in HT Basic (read_bin.htb)

10 REAL Fdata(1:1601,1:2),Freq(1:1601)

20 DIM Buff$[9],Img$[30]

30 INTEGER Nop,!

40!

50 ASSIGN @Agte507x TO 717

60 ASSIGN @Binary TO 717;FORMAT OFF

70!

80 OUTPUT @Agte507x;":CALC1:PARL:SEL"

90 OUTPUT @Agte507x;"INIT1:CONT OFF"
100 OUTPUT @Agte507x;":ABOR"

110 OUTPUT @Agte507x;":SENS1:SWE:POIN?"
120 ENTER @Agte507x;Nop

130 REDIM Fdata(1:Nop,1:2),Freq(1:Nop)

140!

150 ! Reading out in binary transfer format

160!

170 OUTPUT @Agte507x;":FORM:DATA REAL"
180!

190 OUTPUT @Agte507x;":CALC1:DATA:FDAT?"
200 ENTER @Agte507x USING "#,8A";Buff$
210 ENTER @Binary;Fdata(*)

220 ENTER @Agte507x USING "#,1A";Buff$
230 OUTPUT @Agte507x;":SENS1:FREQ:DATA?"
240 ENTER @Agte507x USING "#,8A";Buff$
250 ENTER @Binary;Freq(*)

260 ENTER @Agte507x USING "#,1A";Buff$
270!

280 ! Displaying

290!

300 OUTPUT @Agte507x;":CALC1:FORM?"

310 ENTER @Agte507x;Fmt$

320 SELECT Fmt$

330 CASE "MLOG","PHAS","GDEL","MLIN","SWR","REAL","IMAG","UPH"
340 Img$="MD.4DE,2X,MD.6DE"

350 PRINT " Frequency Data"

1260

360 FOR I=1 TO Nop

370 PRINT USING Img$;Freq(l),Fdata(l,1)
380 NEXT |

390 CASE ELSE

400 Img$="MD.4DE,2X,MD.6DE,2X,MD.6DE"
410 PRINT " Frequency Datal Data2"

420 FOR |=1 TO Nop

430 PRINT USING Img$;Freq(l),Fdata(l,1),Fdata(l,2)
440 NEXT |

450 END SELECT

460 !

470 END

Programming

1261

E5071C

Writing Data in Ascii Format
e« Overview
« Sample Program in HT Basic

Other topics about Sample Programs

Overview
The sample program demonstrates to Write Formatted Data Arrays in
Using the ASCII Transfer Format

See Entering Data into a Trace for this programming.

Sample Program in HT Basic (write_a.htb)

10 REAL Freq,Fdata(1:1601,1:2)

20 DIM File$[300]

30 INTEGER Nop

40!

50 ASSIGN @Agte507x TO 717

60!

70 CALL Inp_file_name(File$)

80!

90 OUTPUT @Agte507x;":CALC1:PARL:SEL"
100 OUTPUT @Agte507x;"INITL:CONT OFF"
110 OUTPUT @Agte507x;":ABOR"

120!

130 OUTPUT @Agte507x;":SENS1:SWE:POIN?"
140 ENTER @Agte507x;Nop

150 REDIM Fdata(1:Nop,1:2)

160!

170 ON ERROR GOTO File_error

180 ASSIGN @File TO File$

190 ENTER @File USING "K";Buff$

200 ENTER @File USING "K";Buff$

210 ENTER @File USING "K";Buff$

220 FOR 1=1 TO Nop

230 ENTER @File USING "19D,2X,19D,2X,19D";Freq,Fdata(l,1),Fdata (1,2)
240 NEXT |

250 ASSIGN @File TO *

260 OFF ERROR

270!

280 OUTPUT @Agte507x;":FORM:DATA ASC"

1262

Programming

290!

300 OUTPUT @Agte507x;":CALC1:DATA:FDAT ";Fdata(*)
310!

320 GOTO Prog_end

330!

340 File_error: OFF ERROR

350 PRINT "##ttHH#####H ERROR #HHHHHHHAH#H#H"

360 PRINT File$&" is NOT exist."

370 PRINT " or"

380 PRINT File$&" has UNSUITABLE data."

390!

400 Prog_end: END

410!
420 ! File Name Input Function
430!
440 SUB Inp_file_name(Inp_name$)

450 DIM Inp_char$[9]

460 ON ERROR GOTO Inp_start

470 Inp_start: !

480 PRINT "Input File Name!"

490 INPUT "Name?",Inp_name$

500 PRINT "Input Name: "&Inp_name$

510 INPUT "OK? [Y/N]",Inp_char$

520 IF UPC$(Inp_char$)<>"Y" THEN Inp_start
530 OFF ERROR

540 SUBEND

Description

Line 50
Assigns a GPIB address to the I/O pass.
Line 70

Passes control to a subprogram named Inp_file_name, which lets the user
input a file name, and then stores the returned file name into the File$
variable. For more information on the Inp_file_name subprogram, refer to
the description in Using the Binary Transfer Format to write Formatted
Data Arrays.

Lines 90 to 110

1263

E5071C

These lines set channel 1's active trace to trace 1 and hold the sweep.
Lines 130 to 140

These lines retrieve the number of points in channel 1 and stores that
number into the Nop variable.

Line 150

Resizes the Fdata array based on the value of the Nop variable (the
number of points).

Line 170

This line points to the statement block to be executed if an error occurs in
retrieving data from the file (for example, if no file matches File$).

Lines 180 to 260

These lines retrieve the formatted data from the file identified by File$, and
store the data into the Fdata array.

Line 280
Sets the data transfer format to ASCII.
Line 300

Writes Fdata into the formatted data array for the active trace (trace 1) in
channel 1.

Lines 340 to 380

This statement block is executed if an error occurs in retrieving data from
the file.

1264

Programming

Writing Data in Binary Format
e« Overview
« Sample Program in HT Basic

Other topics about Sample Programs

Overview

The sample program demonstrates to Write Formatted Data Arrays in
Using the Binary Transfer Format

See Entering Data into a Trace for this programming.
Sample Program in HT Basic (write_b.htb)

10 REAL Freq,Fdata(1:1601,1:2)

20 DIM File$[300],Header$[10]

30 INTEGER Nop

40!

50 ASSIGN @Agte507x TO 717

60 ASSIGN @Binary TO 717;FORMAT OFF

70 CALL Inp_file_name(File$)

80!

90 OUTPUT @Agte507x;":CALC1:PARL:SEL"
100 OUTPUT @Agte507x;"INITL:CONT OFF"
110 OUTPUT @Agte507x;":ABOR"

120!

130 OUTPUT @Agte507x;":SENS1:SWE:POIN?"
140 ENTER @Agte507x;Nop

150 REDIM Fdata(1:Nop,1:2)

160!

170 ON ERROR GOTO File_error

180 ASSIGN @File TO File$

190 ENTER @File USING "K";Buff$

200 ENTER @File USING "K";Buff$

210 ENTER @File USING "K";Buff$

220 FOR 1=1 TO Nop

230 ENTER @File USING "19D,2X,19D,2X,19D";Freq,Fdata(l,1),Fdata (1,2)
240 NEXT |

250 ASSIGN @File TO *

260 OFF ERROR

270!

280 OUTPUT @Agte507x;":FORM:DATA REAL"

1265

E5071C

290 Header$="#6"&IVAL$(8*2*Nop,10)

300 OUTPUT @Agte507x;":.CALC1:DATA:FDAT ";Header$;
310 OUTPUT @Binary;Fdata(*),END

320 GOTO Prog_end

330!

340 File_error: OFF ERROR

350 PRINT "##tHHH#####H ERROR #HHHHHHHAH#H#H"

360 PRINT File$&" is NOT exist."

370 PRINT " or"

380 PRINT File$&" has UNSUITABLE data."

390!

400 Prog_end: END

410!
420 ! File Name Input Function
430!
440 SUB Inp_file_name(Inp_name$)

450 DIM Inp_char$[9]

460 ON ERROR GOTO Inp_start

470 Inp_start: !

480 PRINT "Input File Name!"

490 INPUT "Name?",Inp_name$

500 PRINT "Input Name: "&Inp_name$

510 INPUT "OK? [Y/N]",Inp_char$

520 IF UPC$(Inp_char$)<>"Y" THEN Inp_start
530 OFF ERROR

540 SUBEND

Description

Lines 50 to 60
Assigns a GPIB address to the I/O pass.
Line 70

Passes control to a subprogram named Inp_file_name, which lets the user
input a file name, and then stores the returned file name into the File$
variable.

Lines 90 to 110
These lines set channel 1's active trace to trace 1 and hold the sweep.
Lines 130 to 140

1266

Programming

These lines retrieve the number of points in channel 1 and stores that
number into the Nop variable.

Line 150

Resizes the Fdata array based on the value of the Nop variable (the
number of points).

Line 170

This line points to the statement block to be executed if an error occurs in
retrieving data from the file (for example, if no file matches File$).

Lines 180 to 260

These lines retrieve the formatted data from the file identified by File$, and
store the data into the Fdata array.

Line 280

Sets the data transfer format to binary.

Line 290

Creates the data header and stores it into the Header$ variable.
Line 300

Sends the command that writes data into the formatted data array for the
active trace (trace 1) in channel 1, following it with the data header
(Header$).

Line 310
Sends the data itself (Fdata), following it with a message terminator.

« Because binary data must be written without being formatted,
the program uses an I/0 path (@Binary) that is configured to
support writing unformatted data.

Lines 340 to 380

This statement block is executed if an error occurs in retrieving data from
the file.

The Inp_file_name subprogram in lines 440 to 540, which is used to enter
a save filename, is described below.

Line 460

Allows the user to return to the entry start line and re-enter the data if an
error (such as an invalid entry) occurs while entering the target file name.

Lines 480 to 490

These lines prompt the user to enter the target file name. The program
does not continue till the user actually enters the file name.

Lines 500 to 510

1267

E5071C

These lines display the entered file hame and waits for a confirmation entry
(y/n key).
Line 520

Returns to the entry start line if the key the user pressed in line 870 is not
the y key.

1268

Programming

Peak Search
o Overview
« Sample Program in Excel VBA
e Sample Program in HT Basic

Other topics about Sample Programs

Overview

This sample program demonstrates how to search for peaks using the
Marker Search feature and analysis commands.

This program works in two steps: first, it uses Marker Search to search for
the maximum positive peak and displays the results; second, it uses
analysis commands to search for all positive peaks and displays the
results.

See Searching for Positions That Match Specified Criteria for this
programming.
Sample Program in Excel VBA
Sub PeakSearch_Click()
Dim defrm As Long
Dim vi As Long
Const TimeOutTime = 20000
Dim Buff As String, Img As String, Err_msg As String
Dim Excursion As String, Freq As String * 20, Resp As Variant, PeakPoint As Variant
Dim Poin As String * 5, Result As String * 1000, errmsg As String * 20

Excursion ="0.5"

' Open Analyzer

Call viOpenDefaultRM(defrm)

Call viOpen(defrm, "GPIB0::17::INSTR", 0, 0, vi)

Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, TimeOutTime)
Call viVPrintf(vi, "*CLS" & vbLf, 0)

' Setup Analyzer

Call viVPrintf(vi, ":SENS1:FREQ:CENT 947.5E6" & vbLf, 0)
Call viVPrintf(vi, ":SENS1:FREQ:SPAN 200E6" & vbLf, 0)
Call viVPrintf(vi, :CALC1:PAR1:DEF S11" & vbLf, 0)

Call viVPrintf(vi, ":DISP:WIND1.TRAC1:Y:AUTO" & vbLf, 0)

1269

E5071C

Call viVPrintf(vi, :CALC1:PAR1:SEL" & vbLf, 0)

Call viVPrintf(vi, :CALC1:MARK1:FUNC:TYPE PEAK" & VbLf, 0)
Call viVPrintf(vi, ":CALC1:MARK1:FUNC:PEXC " & Excursion & vbLf, 0)
Call viVPrintf(vi, :CALC1:MARK1:FUNC:PPOL POS" & vbLf, 0)
Call viVPrintf(vi, ":CALC1:MARK1:FUNC:EXEC" & vbLf, 0)

Call ErrorCheck(vi)

Call viVPrintf(vi, ":CALC1:MARK1:X?" & vbLf, 0)

Call vivVScanf(vi, "%t", Freq)

Call viVPrintf(vi, ":CALC1:MARK1:Y?" & vbLf, 0)

Call vivScanf(vi, "%t", Result)

Resp = Split(Result, ",")

Cells(5, 5).Value = Val(Freq)

Cells(5, 6).Value = Val(Resp(0))

Call viVPrintf(vi, :CALC1:FUNC:DOM OFF" & vbLf, 0)
Call viVPrintf(vi, ":CALC1:FUNC:TYPE APE" & vbLf, 0)
Call viVPrintf(vi, ":CALC1:FUNC:PEXC " & Excursion & vbLf, 0)
Call viVPrintf(vi, ":CALC1:FUNC:PPOL NEG" & vbLf, 0)
Call viVPrintf(vi, :CALC1:FUNC:EXEC" & vbLf, 0)
Call ErrorCheck(vi)
Call viVPrintf(vi, :CALC1:FUNC:POIN?" & vbLf, 0)
Call vivVScanf(vi, "%t", Poin)
Call viVPrintf(vi, :CALC1:FUNC:DATA?" & vbLf, 0)
Call vivScanf(vi, "%t", Result)
PeakPoint = Split(Result, ",")
j=1

Fori=1To Val(Poin) /2

Cells(6 + i, 5).Value = Val(PeakPoint(}))

Cells(6 + i, 6).Value = Val(PeakPoint(j + 1))

j=jt2
Next i

Call viClose(vi)

1270

Programming

Call viClose(defrm)
End Sub
Sub ErrorCheck(vi)
Dim err As String * 50, ErrNo As Variant, Response As VbMsgBoxResult
Call vivQueryf(vi, :SYST:ERR?" & vbLf, "%t", err)
ErrNo = Split(err, ",")
If Val(ErrNo(0)) <> 0 Then
Response = MsgBox(CStr(ErrNo(1)), vbOKOnly)
End If
End Sub

Sample Program in HT Basic (search.htb)

10 DIM Buff$[9],Img$[50],Err_msg$[100]

20 REAL Excursion,Freg,Resp,Result(1:100,1:2)

30 INTEGER Poin,Err_no

40!

50 ASSIGN @Agte507x TO 717

60 Excursion=.5

70!

80 OUTPUT @Agte507x;"*ESE 60"

90 OUTPUT @Agte507x;"*SRE 32"

100 OUTPUT @Agte507x;"*CLS"

110 OUTPUT @Agte507x;"*OPC?"

120 ENTER @Agte507x;Buff$

130 ON INTR 7 GOTO Err

140 ENABLE INTR 7;2

150!

160 PRINT "Maximum Peak Search using Marker 1"

170!

180 OUTPUT @Agte507x;":CALC1:PAR1:SEL"

190 OUTPUT @Agte507x;":CALC1:MARK1:FUNC:TYPE PEAK"
200 OUTPUT @Agte507x;":CALC1:MARK1:FUNC:PEXC ";Excursion
210 OUTPUT @Agte507x;":CALC1:MARK1:FUNC:PPOL POS"
220 OUTPUT @Agte507x;":CALC1:MARK1:FUNC:EXEC"

230 OUTPUT @Agte507x;":CALC1:MARK1:X?"

240 ENTER @Agte507x;Freq

250 OUTPUT @Agte507x;":CALC1:MARK1:Y?"

1271

E5071C

260 ENTER @Agte507x;Resp

270 Img$="8A,MD.4DE,2X,MD.6DE"

280 PRINT " Frequency Response"

290 PRINT USING Img$;"Peak: ",Freq,Resp

300!

310 PRINT "All Peaks Search using Command"

320!

330 OUTPUT @Agte507x;":CALC1:FUNC:DOM OFF"
340 OUTPUT @Agte507x;":CALC1:FUNC:TYPE APE"
350 OUTPUT @Agte507x;":CALC1:FUNC:PEXC ";Excursion
360 OUTPUT @Agte507x;":CALC1:FUNC:PPOL POS"
370 OUTPUT @Agte507x;":CALC1:FUNC:EXEC"

380 OUTPUT @Agte507x;":CALC1:FUNC:POIN?"

390 ENTER @Agte507x;Poin

400 REDIM Result(1:Poin,1:2)

410 OUTPUT @Agte507x;":CALC1:FUNC:DATA?"
420 ENTER @Agte507x;Result(*)

430 Img$="4A,2D,2A,MD.4DE,2X,MD.6DE"

440 PRINT " Frequency Response”

450 FOR 1=1 TO Poin

460 PRINT USING Img$;"Peak",l,": ",Result(1,2),Result(l,1)
470 NEXT |

480 GOTO No_err

490 Err: OFF INTR 7

500 OUTPUT @Agte507x;";:SYST:ERR?"

510 ENTER @Agte507x;Err_no,Err_msg$

520 PRINT "Error occurred!!”

530 PRINT " No:";Err_no,"Description: "&Err_msg$
540 No_err: OFF INTR 7

550 END

1272

Programming

Limit Test
e Overview

 Sample Program in HT Basic

Other topics about Sample Programs

Overview

This sample program demonstrates how to perform limit tests.

The sample program creates a limit table as shown in the following two

tables, turns on the Limit Test feature, performs one cycle of

measurement, and then displays the test results.

No. Type Begin End Begin End
Stimulus Stimulus Response Response
1 MAX 847.5 MHz 905.0 MHz -55.0 dBm -55.0 dBm
2 MIN 935.0 MHz 960.0 MHz -3.5 dBm -3.5 dBm
3 MAX 935.0 MHz 960.0 MHz 0 dBm 0 dBm
4 MAX 980.0 MHz 1047.5 -25.0 dBm -25.0 dBm
MHz

See Limit Test for this programming.
Sample Program in HT Basic (lim_test.htb)

10 DIM Param1$[9],Param2$[9],Fmt1$[9],Fmt2$[9],Buff$[9]

20 REAL Cent,Span,Lim1(1:4,1:5),Lim2(1:3,1:5),Fail_data(1:1601)
30 INTEGER Num_of segl,Num_of seg2,Segment,Column,Fail_point
40!

50 ASSIGN @Agte507x TO 717

60!

70 Cent=9.475E+8

80 Span=2.00E+8

90 Param1$="S21"

100 Param2$="S11"

110 Fmt1$="MLOG"

120 Fmt2$="MLOG"

130!

140! ==Trace 1 Limit Line ==

150 Num_of_segl1=4! Number of segments: 4

1273

E5071C

160! -- Segment 1 --

170 Lim1(1,1)=1"! Type : Maximum

180 Lim1(1,2)=8.475E+8 ! Frequency Start: 847.5 MHz
190 Lim1(1,3)=9.050E+8 ! Stop : 905.0 MHz

200 Lim1(1,4)=-55 ! Response Start: -55 dBm

210 Lim1(1,5)=-55! Stop : -55 dBm

220! -- Segment 2 --

230 Lim1(2,1)=2 ! Type : Minimum

240 Lim1(2,2)=9.350E+8 ! Frequency Start: 935.0 MHz
250 Lim1(2,3)=9.600E+8 ! Stop : 960.0 MHz

260 Lim1(2,4)=-3.5 ! Response Start: -3.5 dBm

270 Lim1(2,5)=-3.5 ! Stop : -3.5 dBm

280! -- Segment 3 --

290 Lim1(3,1)=1! Type : Maximum

300 Lim1(3,2)=9.350E+8 ! Frequency Start: 935.0 MHz
310 Lim1(3,3)=9.600E+8 ! Stop : 960.0 MHz

320 Lim1(3,4)=0 ! Response Start: 0 dBm

330 Lim1(3,5)=0"! Stop : 0 dBm

340! -- Segment 4 --

350 Lim1(4,1)=1! Type : Maximum

360 Lim1(4,2)=9.800E+8 ! Frequency Start: 980.0 MHz
370 Lim1(4,3)=1.0475E+9 ! Stop : 1047.5 MHz

380 Lim1(4,4)=-25 ! Response Start: -25 dBm

390 Lim1(4,5)=-25! Stop : -25 dBm

400 ! == Trace 2 Limit Line ==

410 Num_of seg2=3 ! Number of segments: 3

420! -- Segment 1 --

430 Lim2(1,1)=1"! Type : Maximum

440 Lim2(1,2)=8.475E+8 ! Frequency Start: 847.5 MHz
450 Lim2(1,3)=9.250E+8 ! Stop : 925.0 MHz

460 Lim2(1,4)=0! Response Start: 0 dBm

470 Lim2(1,5)=0! Stop : 0 dBm

480! -- Segment 2 --

490 Lim2(2,1)=1"! Type : Maximum

500 Lim2(2,2)=9.350E+8 ! Frequency Start: 935.0 MHz
510 Lim2(2,3)=9.600E+8 ! Stop : 960.0 MHz

520 Lim2(2,4)=-9.5 ! Response Start; -9.5 dBm

1274

530 Lim2(2,5)=-9.5 ! Stop : -9.5 dBm

540! -- Segment 3 --

550 Lim2(3,1)=1! Type : Maximum

560 Lim2(3,2)=9.700E+8 ! Frequency Start: 970.0 MHz
570 Lim2(3,3)=1.0475E+9 ! Stop : 1047.5 MHz

580 Lim2(3,4)=0 ! Response Start: 0 dBm

590 Lim2(3,5)=0! Stop : 0 dBm

600 !

610 OUTPUT @Agte507x;":SENS1:FREQ:CENT ";Cent
620 OUTPUT @Agte507x;":SENS1:FREQ:SPAN ";Span
630 OUTPUT @Agte507x;":CALC1:PAR1:COUN 2"
640 OUTPUT @Agte507x;":DISP:WIND1:SPL D1 _2"
650 OUTPUT @Agte507x;": TRIG:SOUR BUS"

660 OUTPUT @Agte507x;":INITL:CONT ON"

670!

680! Trace 1

690 !

700 OUTPUT @Agte507x;":CALC1:PAR1:SEL"

710!

720 OUTPUT @Agte507x;":CALC1:PAR1:DEF "&Paraml1$
730 OUTPUT @Agte507x;":.CALC1:FORM "&Fmt1$
740!

750 OUTPUT @Agte507x;":CALCL:LIM:DATA ";Num_of_seg1;

760 FOR Segment=1 TO Num_of segl

770 FOR Column=1TO 5

780 OUTPUT @Agte507x;",";Lim1(Segment,Column);
790 NEXT Column

800 NEXT Segment

810 OUTPUT @Agte507x;™

820 OUTPUT @Agte507x;":CALCL.LIM:DISP ON"
830 OUTPUT @Agte507x;":CALC1:LIM ON"

840!

850! Trace 2

860 !

870 OUTPUT @Agte507x;":CALC1:PAR2:SEL"

880!

890 OUTPUT @Agte507x;":CALC1:PAR2:DEF "&Param2$

Programming

1275

E5071C

900 OUTPUT @Agte507x;":CALC1:FORM "&Fmt2$

910!

920 OUTPUT @Agte507x;":CALC1:LIM:DATA ";Num_of seg?;
930 FOR Segment=1 TO Num_of_seg2

940 FOR Column=1TO 5

950 OUTPUT @Agte507x;",";Lim2(Segment,Column);

960 NEXT Column

970 NEXT Segment

980 OUTPUT @Agte507x;™

990 OUTPUT @Agte507x;":CALCL:LIM:DISP ON"

1000 OUTPUT @Agte507x;":CALC1:LIM ON"

1010'!

1020 ! Setting status registers

1030'!

1040 OUTPUT @Agte507x;":STAT:QUES:LIM:CHAN1:ENAB 6"
1050 OUTPUT @Agte507x;":STAT:QUES.LIM:CHAN1:PTR 6"
1060 OUTPUT @Agte507x;":STAT:QUES.LIM:CHANL:NTR 0"
1070 OUTPUT @Agte507x;":STAT:QUES.LIM:PTR 2"

1080 OUTPUT @Agte507x;":STAT:QUES.LIM:NTR 0"

1090 OUTPUT @Agte507x;"*CLS"

1100!

1110 OUTPUT @Agte507x;"TRIG:SING"

1120 OUTPUT @Agte507x;"*OPC?"

1130 ENTER @Agte507x;Buff$

1140'!

1150 ! Checking test results

1160 !

1170 OUTPUT @Agte507x;":STAT:QUES.LIM?"

1180 ENTER @Agte507x;Reg_val

1190 Chl_judge=BIT(Reg_val,1)

1200 OUTPUT @Agte507x;":.STAT:QUES:LIM:CHAN1?"

1210 ENTER @Agte507x;Reg_val

1220 Trl_judge=BIT(Reg_val,1)

1230 Tr2_judge=BIT(Reg_val,2)

1240 !

1250 ! Displaying test results

1260 !

1276

1270 IF Chl_judge=0 THEN

1280 PRINT "## PASS! ##"

1290 ELSE

1300 PRINT "## FAIL! ##"

1310 IF Trl_judge=0 THEN

1320 PRINT " Trace1(S21): PASS"

1330 ELSE

1340 PRINT " Trace1(S21): FAIL"

1350!

1360 ! Reading and displaying frequency at failed points
1370!

1380 OUTPUT @Agte507x;":CALC1:PARL:SEL"

1390 OUTPUT @Agte507x;":CALCL:LIM:REP:POIN?"
1400 ENTER @Agte507x;Fail_point

1410 REDIM Fail_data(1:Fail_point)

1420 OUTPUT @Agte507x;":CALCL:LIM:REP?"

1430 ENTER @Agte507x;Fail_data(*)

1440 PRINT " Frequency:"

1450 FOR I=1 TO Fail_point

1460 PRINT USING "3X,MD.4DE";Fail_data(l)

1470 NEXT |

1480 END IF

1490 IF Tr2_judge=0 THEN

1500 PRINT " Trace2(S11): PASS"

1510 ELSE

1520 PRINT " Trace2(S11): FAIL"

1530!

1540 ! Reading and displaying frequency at failed points
1550 !

1560 OUTPUT @Agte507x;":CALC1:PAR2:SEL"

1570 OUTPUT @Agte507x;":CALCL:LIM:REP:POIN?"
1580 ENTER @Agte507x;Fail_point

1590 REDIM Fail_data(1:Fail_point)

1600 OUTPUT @Agte507x;":CALCL:LIM:REP?"

1610 ENTER @Agte507x;Fail_data(*)

1620 PRINT " Frequency:"

1630 FOR I=1 TO Fail_point

Programming

1277

E5071C

1640 PRINT USING "3X,MD.4DE";Fail_data(l)
1650 NEXT |

1660 END IF

1670 END IF

1680 END

Description

Line 50
Assigns a GPIB address to the I/O pass.
Lines 70 to 120

These lines store the sweep center value, sweep span value, trace 1
measurement parameter, trace 2 measurement parameter, trace 1 data
format, and trace 2 data format into the variables Cent, Span, Param1$,
Param2$, Fmtl$, and Fmt2$, respectively.

Line 150

Stores the number of segments in trace 1 limit table into the Num_of_seg1l
variable.

Lines 160 to 390

These lines store the settings in trace 1 limit table into the Lim1(*)
variable.

Line 410

Stores the number of segments in trace 2 limit table into the Num_of_seg2
variable.

Lines 420 to 590

These lines store the settings in trace 2 limit table into the Lim2(*)
variable.

Lines 610 to 620

These lines configure the sweep range for channel 1's sweep range using
the center and span values contained in the Cent and Span values.

Lines 630 to 660

These lines configure channel 1 so that it contains 2 traces, displays
graphs in two windows tiled horizontally (i.e., with the screen split into
upper and lower halves), uses a bus trigger source, and works in
continuous activation mode.

Line 700
Sets channel 1's active trace to trace 1.
Lines 720 to 730

1278

Programming

These lines store trace 1's measurement parameter and data format into
the variables Param1$ and Fmt1$, respectively.

Lines 750 to 810
These lines set up the limit table for trace 1.

Line 750: Sends the command that sets up a limit table along with the
Num_of_segl variable that contains the number of segments.

Lines 770 to 790: Sends five data items (type, start point stimulus value,
end point stimulus value, start point response value, and end point
response value) for each segment.

Lines 820 to 830

These lines turn on the display of limit lines and the Limit Test feature for
trace 1.

Line 870
Sets channel 1's active trace to trace 2.
Lines 890 to 900

These lines set trace 2's measurement parameter and data format to
Param2$ and Fmt2$, respectively.

Lines 920 to 980
These lines set up the limit table for trace 2.
Lines 990 to 1000

These lines turn on the display of limit lines and the Limit Test feature for
trace 2.

Lines 1040 to 1060

These lines set, under the questionable limit channel 1 status register, the
enable register and positive transition filter to 6 (0000000000000110 in
binary notation) while setting the negative transition filter to 0 so that the
questionable limit status condition register's bit 1 is set to 1 when the test
result that combines the results for trace 1 and trace 2 is "fail."

The sample program provides an example of explicitly configuring the
register bits so that they reflect the test results that only cover trace 1 and
trace 2. However, because the results for traces 3 to 9 will never be "fail"
as long as the Limit Test feature is disabled for those traces, the register
bits would reflect the test result that is limited to traces 1 and 2, even if
the default setting is not changed.

Lines 1070 to 1080

1279

E5071C

These lines set transition filters so that the questionable limit status event
register's bit 1 is set to 1 when the questionable limit status condition
register's bit 1 changes from 0 to 1.

Line 1090

Clears the questionable limit status event register and questionable limit
channel 1 status event register.

Lines 1110 to 1130

These lines trigger the instrument and wait until the sweep cycle is
completed.

Lines 1170 to 1190

These lines retrieve the value of the questionable limit status event
register and store the setting of bit 1 of the value into Ch1_judge.

Lines 1200 to 1230

These lines retrieve the value of the questionable limit channel 1 status
event register and store the settings of bit 1 and bit 2 of the value into
Trl_judge and Tr2_judge, respectively.

Line 1280

Displays a message indicating that the DUT has passed the limit test if the
test result for channel 1 is "Pass" (i.e., if Chl_judge returns 0).

Lines 1300 to 1660

These lines are executed if the test result for channel 1 is "Fail" (i.e., if
Ch1_judge returns 1).

Line 1300: Notifies the user that the limit test result is "Fail".

Line 1320: Displays a message indicating that trace 1 has passed the limit
test if the test result for trace 1 is "Pass" (i.e., if Trl_judge returns 0).

Lines 1340 to 1470: These lines are executed if the test result for trace 1
is "Fail" (i.e., if Tr1_judge returns 1). The lines notify the user that the test
result for trace 1 is "Fail" and then retrieve and display the frequencies at
the failed measurement points on trace 1.

Line 1340: Notifies the user that the limit test result for trace 1 is "Pass."
Line 1380: Sets channel 1's active trace to trace 2.

Lines 1390 to 1410: These lines retrieve the number of failed
measurement points on trace 1 and, based on that humber, resize the
array that contains retrieved frequencies.

Lines 1420 to 1470: These lines retrieve and display the frequencies at the
failed measurement points on trace 1.

1280

Programming

Line 1500: Displays a message indicating that trace 2 has passed the limit
test if the test result for trace 2 is "Pass" (i.e., if Tr2_judge returns 0).

Lines 1520 to 1650: If the test result for trace 2 is "Fail" (i.e., if Tr2_judge
returns 1), these lines notify the user that trace 2 has failed to pass the
limit test and then retrieve and display the frequencies at the failed
measurement points on trace 2.

1281

E5071C

Bandwidth Search
o Overview
« Sample Program in Excel VBA
e Sample Program in HT Basic

Other topics about Sample Programs

Overview
The sample program demonstrates how to perform Bandwidth Search.

The sample program moves the marker to the maximum value position
and then retrieves and displays the results of Bandwidth Search.

See Bandwidth Search for this programming.
Sample Program in Excel VBA

Sub Bandwid_click()

Dim vi As Long

Dim defrm As Long

Dim Threshhold As Long

Dim Result As String * 1000

Dim Bdata As Variant

Const TimeOutTime = 10000

Call viOpenDefaultRM(defrm)

Call viOpen(defrm, "GPIB0::17::INSTR", 0, 0, vi)

Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, TimeOutTime)

Threshhold = -3

Call viVPrintf(vi, ":SENS1:FREQ:CENT 947.5E6" & vbLf, 0)
Call viVPrintf(vi, ":SENS1:FREQ:SPAN 200E6" & vbLf, 0)
Call viVPrintf(vi, :CALC1:PAR1:DEF S21" & vbLf, 0)
Call viVPrintf(vi, ":DISP:WIND1:TRAC1.Y:AUTQO" & vbLf, 0)
Call viVPrintf(vi, ":CALC1:PAR1:SEL" & vbLf, 0)
Call viVPrintf(vi, :CALC1:MARK1:FUNC:TYPE MAX" & vbLf, 0)
Call viVPrintf(vi, :CALC1:MARK1:FUNC:EXEC" & vbLf, 0)
Call viVPrintf(vi, ":CALC1:MARK1:BWID:THR " + CStr(Threshhold) & vbLf, 0)
Call viVPrintf(vi, ":CALC1:MARK1:BWID:DATA?" & vbLf, 0)
Call vivScanf(vi, "%t", Result)
Bdata = Split(Result, ",")
Call ErrorCheck(vi)
Cells(5, 2).Value = Val(Bdata(0))
Cells(6, 2).Value = Val(Bdata(1))

1282

Programming

Cells(7, 2).Value = Val(Bdata(2))
Cells(8, 2).Value = Val(Trim(Bdata(3)))
Call viClose(vi)

Call viClose(defrm)

End Sub

Sub ErrorCheck(vi)
Dim err As String * 50, ErrNo As Variant, Response
Call vivQueryf(vi, :SYST:ERR?" & vbLf, "%t", err)
ErrNo = Split(err, ",")
If Val(ErrNo(0)) <> 0 Then

Response = MsgBox(CStr(ErrNo(1)), vbOKOnly)

End If

End Sub

Sample Program in HT Basic (bandwid.htb)

10 DIM Buff$[9],Err_msg$[100]

20 REAL Threshold,Bwid,Cent,Q,Loss

30 INTEGER Err_no

40!

50 ASSIGN @Agte507x TO 717

60 Threshold=-3

70!

80 OUTPUT @Agte507x;"*ESE 60"

90 OUTPUT @Agte507x;"*SRE 32"

100 OUTPUT @Agte507x;"*CLS"

110 OUTPUT @Agte507x;"*OPC?"

120 ENTER @Agte507x;Buff$

130 ON INTR 7 GOTO Err

140 ENABLE INTR 7;2

150!

160 OUTPUT @Agte507x;":CALC1:PAR1:SEL"

170 OUTPUT @Agte507x;";:CALC1:MARK1:FUNC:TYPE MAX"
180 OUTPUT @Agte507x;":CALC1:MARK1:FUNC:EXEC"
190 OUTPUT @Agte507x;":CALC1:MARK1:BWID:THR ";Threshold
200 OUTPUT @Agte507x;":CALC1:MARK1:BWID:DATA?"
210 WAIT .5

220 ENTER @Agte507x;Bwid,Cent,Q,Loss

1283

E5071C

230!

240 PRINT "## Bandwidth Search ##"
250 PRINT "Bandwidth : ",Bwid

260 PRINT "Center Frequency: “,Cent
270 PRINT "Q : ",Q

280 PRINT "Loss : ",Loss

290!

300 GOTO No_err

310 Err: OFF INTR 7

320 OUTPUT @Agte507x;";:SYST:ERR?"
330 ENTER @Agte507x;Err_no,Err_msg$
340 PRINT "Error occurred!!"

350 PRINT " No:";Err_no,"Description: "&Err_msg$
360 No_err: OFF INTR 7

370 END

1284

Saving Files
o Overview
« Sample Program in Excel VBA
e Sample Program in HT Basic

Programming

Other topics about Sample Programs

Overview

The sample program demonstrates how to save a file. This program saves

selected content on a file with a specified name.

See Saving and Recalling File for this programming.
Sample Program in Excel VBA

Sub File_Save()
' Declare two string variables for file name and file type
Dim File_Name As String
Dim File_Type As String
Dim defrm As Long
Dim vi As Long
Const TimeOutTime = 10000
' Check whether file name textbox is empty or not
If TextBox1.Text <> " Then
File_Name = Trim(TextBox1.Text)
File_Type = Trim(frmFileSave.ComboBox1.Value)
' Open connection to the E5071C
Call viOpenDefaultRM(defrm)
Call viOpen(defrm, "GPIB0::18::INSTR", 0, 0, vi)
Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, TimeOutTime)
Select Case File_Type
Case "1: State (State only)"
Call viVPrintf(vi, :"MMEM:STOR:STYP STAT" + vbLf, 0)
Call viVPrintf(vi, "MMEM:STOR ™" & File_Name & ".sta™ + vbLf, 0)
Case "2: State (State & Cal)"
Call viVPrintf(vi, :"MMEM:STOR:STYP CST" + vbLf, 0)
Call viVPrintf(vi, “MMEM:STOR "™ & File_Name & ".sta™ + vbLf, 0)
Case "3: State (State & Trace)"
Call viVPrintf(vi, :"MMEM:STOR:STYP DST" + vbLf, 0)
Call viVPrintf(vi, "MMEM:STOR """ & File_Name & ".sta™" + vbLf, 0)
Case "4: State (State & Cal & Trace)"
Call viVPrintf(vi, ":MMEM:STOR:STYP CDST" + vbLf, 0)

1285

E5071C

Call viVPrintf(vi, "MMEM:STOR """ & File_Name & ".sta™" + vbLf, 0)
Case "5: State (Trace Data (CSV))"

Call viVPrintf(vi, "MMEM:STOR:FDAT "™ & File_Name & ".csv"" + vbLf, 0)

Case "6: State (Screen)"
Call viVPrintf(vi, "MMEM:STOR:IMAG """ & File_Name & ".bmp™"
Case Else
msgbox "Error in code”
End Select
Call viClose(defrm)
Else
msgbox "Please enter a filename”
End If
End Sub

Sample Program in HT Basic (file_sav.htb)

10 DIM File$[300],Inp_char$[30]

20 INTEGER Content

30 CLEAR SCREEN

40 ASSIGN @Agte507x TO 717

50!

60 ON ERROR GOTO Content_select

70 Content_select: !

80 PRINT "## Save Content Selection ##"
90 PRINT "Select Content"

100 PRINT " 1: State (State only)"

110 PRINT " 2: State (State & Cal)"

120 PRINT " 3: State (State & Trace)"
130 PRINT " 4: State (State & Cal & Trace)"
140 PRINT " 5: Trace Data (CSV)"

150 PRINT " 6: Screen"”

160 PRINT ™

170 PRINT "Input 1 to 6"

180 INPUT "Number?",Inp_char$

190 Content=IVAL(Inp_char$,10)

200 IF Content<1 OR Content>6 THEN Content_select
210 OFF ERROR

220!

230 CALL Inp_file_name(File$)

1286

240!

250 SELECT Content

260 CASE 1

270 OUTPUT @Agte507x;":MMEM:STOR:STYP STAT"
280 OUTPUT @Agte507x;":MMEM:STOR ""&File$&".sta™"
290 CASE 2

300 OUTPUT @Agte507x;":MMEM:STOR:STYP CST"

310 OUTPUT @Agte507x;":MMEM:STOR ""&File$&".sta™"
320 CASE 3

330 OUTPUT @Agte507x;":MMEM:STOR:STYP DST"

340 OUTPUT @Agte507x;":MMEM:STOR ""'&File$&".sta™"
350 CASE 4

360 OUTPUT @Agte507x;":MMEM:STOR:STYP CDST"
370 OUTPUT @Agte507x;":MMEM:STOR ""'&File$&".sta™"
380 CASE 5

390 OUTPUT @Agte507x;":MMEM:STOR:FDAT ""&File$&".csv

400 CASE 6

410 OUTPUT @Agte507x;":MMEM:STOR:IMAG ""'&File$&".bmp

420 END SELECT
430!
440 END

450!

460 ! File Name Input Function

470!

480 SUB Inp_file_name(Inp_name$)

490 DIM Inp_char$[9]

500 ON ERROR GOTO Inp_start

510 Inp_start: !

520 PRINT "## File Name Input ##"

530 PRINT "Input Save File Name (without Extension)"
540 INPUT "Name?",Inp_name$

550 PRINT "Input Name: "&Inp_name$

560 INPUT "OK? [Y/N]",Inp_char$

570 IF UPC$(Inp_char$)<>"Y" THEN Inp_start
580 OFF ERROR

590 SUBEND

Programming

1287

E5071C

Transferring Files
e« Overview
« Sample Program in HT Basic

Other topics about Sample Programs

Overview

This sample program demonstrates to transfer files between the external
controller and the E5071C.

This program reads out data from a specified file on the external controller
(or the E5071C), then write them to a specified file on the E5071C (or the
external controller).

See Managing Files for this programming.
Sample Program in HT Basic (file_xfr.htb)

10 DIM Src_file$[50],Dst_file$[50],Src_size_char$[50],Inp_char$[30]
20 INTEGER Direction

30 ASSIGN @Agte507x TO 717

40!

50 CLEAR SCREEN

60 ON ERROR GOTO Direct_select

70 Direct_select: !

80 PRINT "#### File Transfer #H##"

90 PRINT " 1: E507x -> Controller"

100 PRINT " 2: Controller -> E507x"

110 PRINT ™

120 PRINT "Input 1 or 2"

130 INPUT "Number?",Inp_char$

140 Direction=IVAL(Inp_char$,10)

150 IF Direction<1 OR Direction>2 THEN Direct_select
160 OFF ERROR

170!

180 PRINT ™

190 PRINT " Input source file name. ";
200 INPUT "Name?",Src_file$

210 PRINT ": "&Src_file$

220!

230 IF Direction=2 THEN

240 PRINT " Input source file size. ";

250 INPUT "Size[Byte]?",Src_size_char$

1288

Programming

260 PRINT ": "&Src_size char$&"[Byte]"

270 END IF

280!

290 PRINT " Input destination file name. ";

300 INPUT "Name?"Dst_file$

310 PRINT ": "&Dst_file$

320 PRINT ™

330!

340 IF Direction=1 THEN

350 Copy_to_contr(@Agte507x,Src_file$,Dst_file$)

360 ELSE

370 Copy_to_e507x(@Agte507x,Src_file$,Src_size _char$,Dst_file$)
380 END IF

390!

400 END

410!
420 ! File Transfer Function (E507x -> Controller)
430!
440 SUB Copy_to_contr(@Agte507x,Src_file$,Dst_file$)

450 DIM Img$[32],Src_size char$[10],Buff$[9],Err_msg$[100]
460 INTEGER Max_bsize,Block_size,Err_no

470 REAL Src_size

480!

490 ON ERROR GOTO Skip_purge

500 PURGE Dst_file$

510 Skip_purge: OFF ERROR

520 CREATE Dst_file$,1

530 ASSIGN @Dst_file TO Dst_file$

540 Max_bsize=24576 | 24KByte

550 !

560 OUTPUT @Agte507x;"*ESE 60"

570 OUTPUT @Agte507x;"*SRE 32"

580 OUTPUT @Agte507x;"*CLS"

590 OUTPUT @Agte507x;"*OPC?"

600 ENTER @Agte507x;Buff$

610!

620 ON INTR 7 GOTO Err

1289

E5071C

630 ENABLE INTR 7;2

640 PRINT "Now Copying: "&Src_file$&"(@E507x) -> "&Dst_file$&"(@Contro ller)"
650 OUTPUT @Agte507x;":MMEM:TRAN? ""'&Src_file$&"""
660 WAIT .1

670 ENTER @Agte507x USING "#,A";Buff$

680 ENTER @Agte507x USING "#,A";Digit$

690 Img$="#,"&Digit$&"A"

700 ENTER @Agte507x USING Img$;Src_size _char$
710!

720 Src_size=VAL(Src_size_char$)

730 WHILE Src_size>0

740 IF Src_size>Max_bsize THEN

750 Block_size=Max_bsize

760 ELSE

770 Block_size=Src_size

780 END IF

790!

800 ALLOCATE Dat$[Block_size]

810 Img$="#,"&VALS$(Block_size)&"A"

820 ENTER @Agte507x USING Img$;Dat$

830 OUTPUT @Dst_file USING Img$;Dat$

840 DEALLOCATE Dat$

850 !

860 Src_size=Src_size-Block_size

870 END WHILE

880 !

890 PRINT "Done"

900 ENTER @Agte507x USING "#,A";Buff$

910 ASSIGN @Dst _file TO *

920!

930 GOTO Skip_error

940 Err: OFF INTR 7

950 OUTPUT @Agte507x;";:SYST.ERR?"

960 ENTER @Agte507x;Err_no,Err_msg$

970 PRINT "Error occurred!!”

980 PRINT " No:";Err_no,"Description: "&Err_msg$
990 Skip_error: OFF INTR 7

1290

Programming

1000 SUBEND
1010!
1020 ! File Transfer Function (Controller -> E507x)
1030'!
1040 SUB Copy_to_e507x(@Agte507x,Src_file$,Src_size char$,Dst_file$)

1050 DIM Img$[32],Header$[10],Buff$[9],Err_msg$[100]

1060 INTEGER Max_bsize,Block_size,Err_no

1070 REAL Src_size

1080'!

1090 ON ERROR GOTO File_error

1100 ASSIGN @Src_file TO Src_file$

1110 OFF ERROR

1120 Max_bsize=24576 | 24KByte

1130!

1140 OUTPUT @Agte507x;"*CLS"

1150 OUTPUT @Agte507x;"*OPC?"

1160 ENTER @Agte507x;Buff$

1170!

1180 PRINT "Now Copying: "&Src_file$&"(@Controller) -> "&Dst_file$&"(@ E507x)"
1190 Header$="#"&VVAL$(LEN(Src_size_char$))&Src_size_char$

1200 OUTPUT @Agte507x;":MMEM:TRAN ""&Dst _file$&™","&Header$;

1210!

1220 Src_size=VAL(Src_size_char$)

1230 WHILE Src_size>0

1240 IF Src_size>Max_bsize THEN

1250 Block_size=Max_bsize

1260 ELSE

1270 Block_size=Src_size

1280 END IF

1290!

1300 ALLOCATE Dat$[Block_size]

1310 Img$="#,"& VAL$(Block_size)&"A"

1320 ENTER @Src_file USING Img$;Dat$

1330 OUTPUT @Agte507x USING Img$;Dat$

1340 DEALLOCATE Dat$

1350!

1360 Src_size=Src_size-Block_size

1291

E5071C

1370 END WHILE

1380 !

1390 OUTPUT @Agte507x;"™,END

1400 ASSIGN @Src_file TO *

1410!

1420 OUTPUT @Agte507x;";:SYST:ERR?"
1430 ENTER @Agte507x;Err_no,Err_msg$
1440 IF Err_no=0 THEN

1450 PRINT "Done"

1460 ELSE

1470 PRINT "Error occurred!!”

1480 PRINT " No:";Err_no,"Description: "&Err_msg$
1490 END IF

1500 GOTO Skip_error

1510 File_error:OFF ERROR

1520 PRINT "File name NOT found!"

1530 Skip_error:!

1540 SUBEND

Description

Line 40
Assigns a GPIB address to the I/O pass.
Lines 60 to 130

These line allow the user to return to the entry start line and re-enter the
data if an error (such as an invalid entry) occurs while entering the number
that indicates the transfer direction. Then, these line display the list of
transfer directions and prompt the user to input a selected number.

Lines 80 to 130

These lines display the list of transfer directions, and prompt the user to
choose one of the items by typing in the appropriate number.

Lines 140 to 150

Converts the entered value into an integer and stores it into the Direction
variable. Returns to the entry start line if an invalid value is contained in
Direction.

Lines 180 to 210

These lines obtain the name of the source file for copying from the user
input, store it into the Src_file$ variable, and display the value of Src_file$.

1292

Programming

Lines 180 to 210

These lines obtain the name of the source file for copying from the user
input, store it into the Src_file$ variable, and display the value of Src_file$.

Lines 230 to 270

If Direction is equal to 2 (from the external controller to the E5071C),
these lines obtain the size of the source file for copying, store it into the
Src_size_char$, and display the value of Src_size_char$.

Lines 290 to 320

These lines obtain the name of the destination file for copying from the
user input, store it into the Dst_file$ variable, and display the value of
Dst_file$.
Line 350

If Direction is equal to 1 (from the E5071C to the external controller),
these lines use the subprogram Copy_to_contr to transfer (copy) a file with
the name Src_file$ on the E5071C to a file with the name Dst_file$ on the
external controller.

Line 370

If Direction is equal to 2, these lines use the subprogram Copy_to_e507x
to transfer (copy) a file with the name Src_file$ on the external controller
to a file with the name Dst_file$ on the E5071C.

Copy_to_contr, a subprogram for transferring files from the E5071C to the
external controller that appears in lines 440 to 1000, is described below.

Lines 490 to 520

If any file with the name File$ already exists, these lines delete the file and
newly create a file with the name File$.

Line 530
Assigns a destination file for copying to the I/O pass.
Line 540

This line stores a maximum number of transferred data (in bytes) per one
transfer, that is 24 KByte to meet the size limitation of string arrays in the
HTBasic, into Max_bsize variable.

Lines 560 to 600

These lines configure the system to generate an SRQ when it cannot find a
source file for copying due to an error.

Lines 620 to 630

These lines set the branch target for an SRQ interrupt to enable SRQ
interrupts.

1293

E5071C

Lines 640 to 650

These lines display a message showing that the transfer has started, and
execute commands for reading data from a file on the E5071C.

Lines 670 to 680

These lines read the header symbol (#) in a block data, read number of
digits (characters) indicating the size of data in bytes, then store it into
Digit$ variable.

Line 690
This line creates a format for reading characters in Digit$.
Line 700

This line reads the data size in byte and stores it into Src_size_char$
variable.

Line 720

This line converts Src_size_char$ to a real number and stores it into
Src_size variable.

Lines 730 to 870
These lines repeat the procedures below until Src_size reaches 0.

Lines 740 to 780: If Src_size is greater than Max_bsize, these lines assign
the value of the Max_bsize to Block_size variable (transferred data in
bytes). If Src_size is equal or less than Max_bsize, assign the value of
Src_size to Block_size.

Line 800 This line defines Dat$ string variable with the size as large as
Block_size and reserves memory area.

Line 810 This line creates a format for reading characters as many as
Block_size characters.

Line 820 This line reads data from the file on the E5071C, then stores
them into Dat$.

Line 830 This line writes the contents of Dat$ to the file on the external
controller.

Lines 840 to 860 These lines free the memory area for Dat$ and subtract
Block_size from Src_size.

Lines 890 to 900

These lines display a message showing the completion of transfer, then
read a message terminator at the end of the data.

Lines 940 to 980

These lines define an error handler that retrieves and displays the number
and message of an error that has occurred.

1294

Programming

Copy_to_e507x, a subprogram for transferring files from the external
controller to the E5071C that appears in lines 1040 to 1540, is described
below.

Lines 1090 to 1110
Assigns a destination file for copying to the I/O pass.
Line 1120

This line stores a maximum number of transferred data (in bytes) per one
transfer, that is 24 KByte, into Max_bsize variable.

Lines 1140 to 1160

Clears the error queue.

Line 1180

Displays a measurement start message.
Lines 1190 to 1200

These lines create the header part indicating that data will be sent as many
as Src_size_char$ bytes, then send the header part of the command and
its parameters for writing the data to the file on the E5071C.

Line 1220

This line converts Src_size_char$ to a real number and stores it into
Src_size variable.

Lines 1230 to 1370
These lines repeat the procedures below until Src_size reaches 0.

Lines 1240 to 1280: If Src_size is greater than Max_bsize, these lines
assign the value of the Max_bsiize to Block_size variable (transferred data
in bytes). If Src_size is equal or less than Max_bsize, assign the value of
Src_size to Block_size.

Line 1300 This line defines Dat$ string variable with the size as large as
Block_size and reserves memory area.

Line 1310 This line creates a format for reading characters as many as
Block_size characters.

Line 1320 This line reads data from the file on the external controller, then
stores them into Dat$.

Line 1330 This line writes the contents of Dat$ to the file on the E5071C.

Lines 1340 to 1360 These lines free the memory area for Dat$ and
subtract Block_size from Src_size.

Line 1390
This line sends a message terminator at the end of data.

1295

E5071C

Lines 1420 to 1430

These lines retrieve the error number and error message from the error
queue, and then store them into the variables Err_no and Err_msg$,
respectively.

Lines 1440 to 1490

If Err_no is equal to 0 (no error occurred), these lines display the message
indicating completion of transfer, and if Err_no is not equal to 0 (an error
occurred), display Err_no along with Err_msg$.

Lines 1510 to 1520
These lines handle the case with no source file for copying is found.

1296

Programming

Fixture Simulator
o Overview
« Sample Program in Excel VBA
e Sample Program in HT Basic

Other topics about Sample Programs

Overview

The sample program demonstrates how to use the Fixture Simulator.

This configures the Balance-Unbalance Conversion, Differential Matching
Circuit Embedding, Port Impedance Conversion, and Differential Port
Impedance Conversion features so that the instrument can correctly deal
with an unbalance-balance (3-port) DUT.

See Analysis Using the Fixture Simulator for this programming.
Sample Program in Excel VBA

Sub Fixture_Click()
Dim defrm As Long 'Session to Default Resource Manager
Dim vi As Long ‘Session to instrument
Dim Para As String
Dim Dev_Type As String
Dim Dmc_c As Double
Dim Dmc_g As Double
Dim Dmc_| As Double
Dim Dmc_r As Double
Dim Z0_se As Double
Dim Z0_diff As Double
Dim Port(3) As Integer
Dim Result As String

Const TimeOutTime = 20000

Dev_Type = "SBAL" 'Divice Type : SE-Bal
Port(1) =1 'Portl(SE) :1

Port(2) =2 'Port2(Bal) :2,3

Port(3) =3 ‘

Para = "SDS21" 'Meas. Parameter : Sds21
Dmc_c = 0.000000000001 'Diff. C:1pF
Dmc_g =0.002 'Matching G:2mS
Dmc_| =0.00000003 'Circuit ~ L:30nH

1297

E5071C

Dmc_r=0.004 ' R : 4 mohm

Z0 se =100 'Z Conversion Z0 : 100 ohm

Z0 _diff = 210 'Diff. Z Conv.Z0 : 210 ohm

Call viOpenDefaultRM(defrm) 'Initializes the VISA system.

Call viOpen(defrm, "GPIB0::17::INSTR", 0, 0, vi) 'Opens the session to the specified instrument.

Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, TimeOutTime) ‘The state of an attribute for the
specified session.

Call viVPrintf(vi, "*RST" & vbLf, 0) 'Presets the setting state of the ENA.
Call viVPrintf(vi, "*CLS" & vbLf, 0) 'Clears the all status register.

Call viVPrintf(vi, :CALC1:FSIM:BAL:DEV " & Dev_Type & vbLf, 0) 'Sets the balance device type.

Call viVPrintf(vi, :CALC1:FSIM:BAL:TOP:" & Dev_Type & "" & Port(1) & "," & Port(2) & "," & Port(3) &
vbLf, 0) 'Sets the port assignment.

Call viVPrintf(vi, :CALC1:FSIM:BAL:PAR1:" & Dev_Type & "" & Para & vbLf, 0) 'Sets the
measurement parameter of port 1.

Call viVPrintf(vi, ":CALC1:FSIM:BAL:PARL:STAT ON" & vbLf, 0) 'Turns on balance-unbalance
conversion.

Call ErrorCheck(vi) 'Checking the error.

Call viVPrintf(vi, :CALC1:FSIM:BAL:DMC:BPOR1 PLPC" & vbLf, 0) 'Specifies the type of differential
matching circuit.

Call viVPrintf(vi, ":CALC1:FSIM:BAL:DMC:BPOR1:PAR:C " & Dmc_c & vbLf, 0) 'Sets the differential
matching circuit constants C.

Call viVPrintf(vi, ":CALC1:FSIM:BAL:DMC:BPOR1:PAR:G " & Dmc_g & vbLf, 0) 'Sets the differential
matching circuit constants G.

Call viVPrintf(vi, ":CALC1:FSIM:BAL:DMC:BPOR1:PAR:L " & Dmc_| & vbLf, 0) 'Sets the differential
matching circuit constants L.

Call viVPrintf(vi, ":CALC1:FSIM:BAL:DMC:BPOR1:PAR:R " & Dmc_r & vbLf, 0) 'Sets the differential
matching circuit constants R.

Call viVPrintf(vi, ":CALC1:FSIM:BAL:DMC:STAT ON" & vbLf, 0) Turns of differential matching circuit
embedding.

Call ErrorCheck(vi) 'Checking the error.

Call viVPrintf(vi, ":CALC1:FSIM:SEND:ZCON:PORT2:Z0 " & Z0_se & vbLf, 0) 'Sets the port
impedance of port 2.

Call viVPrintf(vi, ":CALC1:FSIM:SEND:ZCON:PORT3:Z0 " & Z0_se & vbLf, 0) 'Sets the port
impedance of port 3.

Call viVPrintf(vi, ":CALC1:FSIM:SEND:ZCON:STAT ON" & vbLf, 0) "Turns on port impedance
conversion.

1298

Programming
Call ErrorCheck(vi) 'Checking the error.

Call viVPrintf(vi, ":CALC1:FSIM:BAL:DZC:BPOR1:20 " & Z0_diff & vbLf, 0) 'Sets the differential port
impedance of balance port 1.

Call viVPrintf(vi, ":.CALC1:FSIM:BAL:DZC:STAT ON" & vbLf, 0) "Turns on differential port impedance
conversion.

Call viVPrintf(vi, :CALC1:FSIM:STAT ON" & vbLf, 0) "Turns on the fixture simulator.
Call ErrorCheck(vi) 'Checking the error.

Call viClose(vi) 'Closes the resource manager session.
Call viClose(defrm) 'Breaks the communication and terminates the VISA system.
End
End Sub
Sub ErrorCheck(vi As Long)
Dim err As String * 50, ErrNo As Variant, Response

Call vivQueryf(vi, :SYST:ERR?" & VbLf, "%t", err) 'Reads error message.
ErrNo = Split(err, ",") 'Gets the error code.

If Val(ErrNo(0)) <> 0 Then
Response = MsgBox(CStr(ErrNo(1)), vbOKOnly) 'Display the message box.
End If
End Sub

Sample Program in HT Basic (fixture.htb)
10 DIM Dev_type$[9],Para$[9]
20 REAL Dmc_c,Dmc_g,Dmc_|,.Dmc_r,Z0_se,Z0_diff
30 INTEGER Port(1:3)
40!
50 ASSIGN @Agte507x TO 717
60!
70 Dev_type$="SBAL" ! Device Type : SE-Bal
80 Port(1)=1"! Port1(SE) : 1
90 Port(2)=2 ! Port2(Bal) : 2,3
100 Port(3)=3 !
110 Para$="SDS21" | Meas. Parameter : Sds21
120 Dmc_c=1.E-12 ! Diff. C: 1 pF
130 Dmc_g=2.E-3 ! Matching G: 2 mS

1299

E5071C

140 Dmc_|=3.E-8 ! Circuit L: 30 nH

150 Dmc_r=4.E-3! R: 4 mohm

160 Z0_se=100"!Z Conversion Z0: 100 ohm

170 Z0_diff=210! Diff. Z Conv. Z0: 210 ohm

180!

190 ! Balance-Unbalance Conversion Setting

200!

210 OUTPUT @Agte507x;":CALCL:FSIM:BAL:DEV "&Dev_type$

220 OUTPUT @Agte507x;":CALCL:FSIM:BAL:TOP:"&Dev_type$&" ";Port(*)
230 OUTPUT @Agte507x;":CALCL:FSIM:BAL:PARL:"&Dev_type$&" "&Para$
240 OUTPUT @Agte507x;":CALCL1:FSIM:BAL:PARL:STAT ON"

250!

260 ! Diff. Matching Circuit Setting

270!

280 OUTPUT @Agte507x;":CALC1:FSIM:BAL:DMC:BPOR1 PLPC"

290 OUTPUT @Agte507x;":CALC1:FSIM:BAL:DMC:BPOR1:PAR:C ";Dmc_c
300 OUTPUT @Agte507x;":CALCL:FSIM:BAL:DMC:BPOR1:PAR:G ";Dmc_g
310 OUTPUT @Agte507x;":CALC1:FSIM:BAL:DMC:BPOR1:PAR:L ";Dmc |
320 OUTPUT @Agte507x;":CALC1:FSIM:BAL:DMC:BPOR1:PAR:R ";Dmc_r
330 OUTPUT @Agte507x;":CALC1:FSIM:BAL:DMC:STAT ON"

340!

350 ! Z Conversion Setting

360!

370 OUTPUT @Agte507x;":CALC1:FSIM:SEND:ZCON:PORT2:20 ";Z0_se
380 OUTPUT @Agte507x;":CALC1:FSIM:SEND:ZCON:PORT3:20 ";Z0_se
390 OUTPUT @Agte507x;":CALC1:FSIM:SEND:ZCON:STAT ON"

400!

410 ! Diff. Z Conversion Setting

420!

430 OUTPUT @Agte507x;":CALC1:FSIM:BAL:DZC:BPOR1:Z0 ";Z0_diff
440 OUTPUT @Agte507x;":.CALCL:FSIM:BAL:DZC:STAT ON"

450!

460 ! Fixture Simulator On/Off

470!

480 OUTPUT @Agte507x;":.CALC1:FSIM:STAT ON"

490!

500 END

1300

Programming

Time Domain
o Overview
« Sample Program in Excel VBA
e Sample Program in HT Basic

Other topics about Sample Programs

Overview
This sample program demonstrates how to use the transformation function
of the time domain function.

This program executes calibration (ECal), performs measurement once,
converts the results to data in the time domain, and displays this data.

See Analysis in Time Domain (time domain function) for this programming.
Sample Program in Excel VBA

Sub Time_Domain_Click()

Dim defrm As Long 'Session to Default Resource Manager
Dim vi As Long 'Session to instrument
Dim Para As String

Dim Tran_Type As String
Dim Stim_Type As String
Dim stop_freq As Double
Dim Win_Beta As Double
Dim Star_Time As Double
Dim Stop_Time As Double
Dim Result As String

Const TimeOutTime = 40000 timeout time.

stop_freq = 3000000000# 'Stop Frequendy : 3 GHz

Nop = 201 ‘Nop 1201

Para ="S11" ‘Meas. Parameter : S11

Tran_Type = "LPAS" ‘Transform Type : Lowpass

Stim_Type ="IMP" 'Stimulus Type : Impulse

Win_Beta =13 'Window Beta : 13 (Maximum Type)

Star Time=0 ‘Starttime :0sec

Stop_Time =0.00000001 'Stop time ~ : 10 nsec

Call viOpenDefaultRM(defrm) 'Initializes the VISA system.

1301

E5071C

Call viOpen(defrm, "GPIB0::17::INSTR", 0, 0, vi) 'Opens the session to the
specified instrument.
Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, TimeOutTime) ‘The state of an attribute

for the specified session.

Call viVPrintf(vi, :SYST:PRES" & vbLf, 0) 'Presets the setting state of the ENA.

Call viVPrintf(vi, "*CLS" & vbLf, 0) 'Clears the all status register.

Call viVPrintf(vi, ":SENS1:FREQ:STOP " & stop_freq & vbLf, 0) 'Sets the sweep stop
frequency.

Call viVPrintf(vi, :SENS1:SWE:POIN " & Nop & vbLf, 0) 'Sets the number of points.

Call viVPrintf(vi, :CALCL: TRAN:TIME:LPFR" & vbLf, 0) 'Sets a measurement point.

Call viVPrintf(vi, ":CALC1:PAR1:DEF " & Para & VvbLf, 0) 'Sets the measurement
parameter.

Call viVPrintf(vi, :“TRIG:SOUR BUS" & vbLf, 0) 'Sets the trigger source to BUS.

Call ErrorCheck(vi) ‘Checking the error.

MsgBox "Connect Portl to Ecal Module. Then click OK button.", voOKOnly 'Display the message
box.

Call viVPrintf(vi, “SENS1:CORR:COLL:ECAL:SOLT1 1" & vbLf, 0) 'Execute the 1-port
calibration.

Call viVPrintf(vi, "*OPC?" & vbLf, 0) 'Sets the *OPC? command.

Call vivScanf(vi, "%t", Result) 'Reads the *OPC? result.

Call ErrorCheck(vi) 'Checking the error.

MsgBox "Set DUT. Then click OK button.", vbOKOnly 'Display the message box.

Call viVPrintf(vi, “TRIG:SING" & vbLf, 0) 'Execute the trigger.

Call viVPrintf(vi, "*OPC?" & vbLf, 0) 'Sets the *OPC? command.

Call vivScanf(vi, "%t", Result) 'Reads the *OPC? result.

Call viVPrintf(vi, ":DISP:WIND1:TRAC1.Y:AUTQO" & vbLf, 0) 'Execute auto scale.

MsgBox "Click OK button. < Time Domain Transform >", voOKOnly 'Display the message
box.

Call viVPrintf(vi, ":CALCL:TRAN:TIME " & Tran_Type & vbLf, 0) 'Sets the transformation
type.

1302

Call viVPrintf(vi, :CALC1: TRAN:TIME:STIM " & Stim_Type & vbLf, 0)

Call viVPrintf(vi, ":CALCL:TRAN:TIME:KBES " & Win_Beta & vbLf, 0)
the window.

Call viVPrintf(vi, :CALCL:TRAN:TIME:STAR " & Star_Time & vbLf, 0)
the display range.

Call viVPrintf(vi, ":CALCL.:TRAN:TIME:STOP " & Stop_Time & vbLf, 0)
the display range.

Call viVPrintf(vi, :CALCL:TRAN:TIME:STAT ON" & vbLf, 0)
function.

Programming

'Sets the stimulus type.
'Sets the beta value of

'Sets the start value of
'Sets the end value of

‘Turns on the time domain

Call ErrorCheck(vi) 'Checking the error.

Call viVPrintf(vi, :CALC1:PAR1:SEL" & vbLf, 0) 'Sets the active trace.

Call viVPrintf(vi, ":CALC1:FORM REAL" & vbLf, 0)
Call viVPrintf(vi, ":DISP:WIND1:TRAC1:Y:AUTO" & vbLf, 0)

'Sets the real data format.
'Execute auto scale.

Call ErrorCheck(vi) 'Checking the error.

Call viClose(vi) 'Closes the resource manager session.

Call viClose(defrm) ‘Breaks the communication and terminates
the VISA system.

End 'End
End Sub

Sample Program in HT Basic
10 DIM Para$[9], Tran_type$[9],Stim_type$[9],Buff$[9],Inp_ch ar$[9]
20 REAL Stop_freq,Win_beta,Star_time,Stop_time
30 INTEGER Nop
40!
50 ASSIGN @Agte507x TO 717
60!
70 Stop_freq=3.E+9 ! Stop Frequency : 3 GHz
80 Nop=201! Nop : 201
90 Para$="S11"! Meas. Parameter : S11
100!
110 Tran_type$="LPAS" ! Transform Type : Lowpass
120 Stim_type$="IMP" ! Stimulus Type : Impulse
130 Win_beta=13 ! Window Beta : 13 (Maximum Type)
140 Star_time=0! Starttime :0's
150 Stop_time=1.E-8 ! Stop time : 10 ns
160 !

1303

E5071C

170 OUTPUT @Agte507x;":SYST:PRES"

180 OUTPUT @Agte507x;":SENS1:FREQ:STOP ";Stop_freq

190 OUTPUT @Agte507x;":SENS1:SWE:POIN ";Nop

200!

210 OUTPUT @Agte507x;":CALCL:TRAN:TIME:LPFR"

220!

230 OUTPUT @Agte507x;":CALC1:PAR1:DEF "&Para$

240 OUTPUT @Agte507x;":TRIG:SOUR BUS"

250!

260! 1 Port Full Calibration (ECal)

270!

280 PRINT "Connect Port 1 to ECal Module. Then push [Enter] key."
290 INPUT ™ Buff$

300 OUTPUT @Agte507x;":SENS1:CORR:COLL:ECAL:SOLT1 1"
310 OUTPUT @Agte507x;":SYST:ERR?"

320 ENTER @Agte507x;Buff$

330!

340 ! Measurement

350!

360 PRINT "Set DUT. Then Push [Enter] key."

370 INPUT "™,Inp_char$

380!

390 OUTPUT @Agte507x;": TRIG:SING"

400 OUTPUT @Agte507x;"*OPC?"

410 ENTER @Agte507x;Buff$

420!

430 OUTPUT @Agte507x;":DISP:WIND1:TRACL:Y:AUTO"

440 PRINT "Push [Enter] key. -> [Time Domain Transform]"

450 INPUT "™,Inp_char$

460 !

470 ! Time Domain Transform

480!

490 OUTPUT @Agte507x;":CALCL:TRAN:TIME "&Tran_type$
500 OUTPUT @Agte507x;":CALCL:TRAN:TIME:STIM "&Stim_type$
510 OUTPUT @Agte507x;":CALCL:TRAN:TIME:KBES ";Win_beta
520 OUTPUT @Agte507x;":CALCL:TRAN:TIME:STAR ";Star_time
530 OUTPUT @Agte507x;":CALCL:TRAN:TIME:STOP ";Stop_time

1304

Programming

540 OUTPUT @Agte507x;":CALCL.TRAN:TIME:STAT ON"
550!

560 OUTPUT @Agte507x;":CALC1:PARL:SEL"

570 OUTPUT @Agte507x;":CALC1:FORM REAL"

580 OUTPUT @Agte507x;":DISP:WIND1:TRACL:Y:AUTO"
590 END

1305

E5071C

Control Using SICL-LAN Server
e Overview
 Sample Program in Excel VBA

Other topics about Sample Application Program

Overview

This section explains how to control the E5071C by using SICL in the
Windows environment.

e To control the E5071C using the SICL-LAN server, you need to
make the preparations described in Control over SICL-LAN
server.

Sample Program in Excel VBA

Opening ctrl_lansicl.xls in Microsoft Excel displays a screen as shown in the
figure below:

ctrl_lansicl.xls

E Microsoft Excel - ctri_lansicl.xls 3|
id] Bl Eit Yew juert Fgmat Took Qota BobofDF Window Help -8 X
Ly s ol i A-8 oz -dlige s [l g TT o = zB g EEE s .50

e -] o T [r a [C]] J L3 L u
o I . . | | ! ! | .
" FICL-LAN ddrere | 17 | HOTE <
y k WPkl | ARE.bdebid | .: _ 1
3 Channel 1

Stimulus [— 2

| : 3

L
1] el
] |3, EBor) Ty Epian
M| E i, 00Es0R
:.? of Pty . 000 1NC-0 IMEA B DS AOE-N G- TED-
| ET! T |
4 4 4 4 4 4

B v

Lol

100

& DO 1 1 ! N Ak ey

Al in

A

Tatad

LB OO0 3. T1S0E19T L
LSO TO0000 3. LI E %
|||||||||| T

W A8 A\ Bhoutl R - J ¥ |

Euracky o e bk ! ll'-i]

ed0T1c191

For how to use each element in ctrl_lansicl.xls, refer to the following
description.

1. In part 1, in the cell to the right of the SICL-LAN Address, enter the
address of the E5071C for control with the SICL-LAN server. This

1306

Programming

address is XX, which has been set with the command System > Misc
Setup > Network Setup > SICL-LAN Address [XX]. Enter the IP
address of the E5071C in the cell to the right of the IP Address. This
VBA macro will not work properly without the correct values in these
two cells.

2. Click Preset in part 2 to execute the presetting operation.

3. In part 3, the sweep range (start and stop points) and the number of
measurement points for channel 1 are set. Click Set to execute the
setting as shown in the setting table.

4. Part 4 sets the measurement parameters and data format for trace 1
in channel 1. Click Set to execute the setting as shown in the setting
table.

5. Click Read Trace in part 5 retrieves the formatted data array of trace
1 in channel 1. The data is displayed in tabular and graphical format.

Description of Operation in VBA macro
This section describes the operation of the VBA macro, focusing on the part
related to control with SICL.

e In order to use SICL in your VBA macro, you must declare
functions and define variables with a SICL definition file (for
VB).

o In the VBA macro, ctrl_sicllan.xls, the standard module whose
object name is "SICL," is the definition file.

The basic control flow with SICL is shown in Flow of control using SICL.

o In this sample program, the ivprintf function, the ivscanf
function, and the iread function are used in its communication
part; you can use other SICL functions as well. For details, refer
to sicl.hlp (the online help of SICL).

Flow of control using SICL

1307

E5071C

Connect
iopen

Trans mil,
Eﬁ&we. il;ﬁanf lre!ﬂ:i elc.

Disconnect
lcloss

00T ol

« For more information on how to use each function of SICL, refer
to the SICL manual.

The procedures of each step in Flow of control using SICL are described
below.

Connection

The procedure corresponding to connection is OpenSession (OpenSession).
OpenSession establishes a connection to the E5071C with the iopen
function of SICL, using the SICL-LAN Address and IP Address entered in
part 1 in ctrl_lansicl.xls. The iopen function takes the address information
of the E5071C you specify as its parameters.

Syntax
addr = iopen(dev)

Variable addr

Description Session information (output)

Data type Integer type

dev

Description | Address information of the instrument you specify
(input)

Data type Character string type

1308

Programming

Grammar sicl-name [ip-address]:interface, sicl-lan-address

For example, if the parameter (dev) is "lan[192.168.0.1]:hpib9,17,"
connection is made to the address of 17 of the interface of hpib9 with the
E5071C whose IP address is 192.168.0.1 by using the external controller
whose SICL interface name is lan.

OpenSession

Function OpenSession() As Integer
Dim ServAddr As String

Dim IpAddr As String

On Error GoTo ErrHandler

"Get Sicl-Lan Address
Sheets("Sheetl1").Select
Range('C2").Select

ServAddr = ActiveCell.FormulaR1C1
"Get Ip Address
Sheets("Sheetl1").Select
Range("C3").Select

IpAddr = ActiveCell.FormulaR1C1

OpenSession = iopen("lan[" & IpAddr & "]:hpib9," & ServAddr)
Call itimeout(OpenSession, 10000)

Exit Function

ErrHandler:

MsgBox "*** Error : " & Error$

Call siclcleanup

End

End Function

Sending

The procedure corresponding to sending in communication is
OutputSiclLan. OutputSiclLan uses the ivprintf function of SICL to send
messages (SCPI commands). The ivprintf function takes the session
information output from the iopen function and a program message as its
parameters.

Syntax

1309

E5071C

Status = ivprintf(addr,mes)

Variable

Status

Description

Return value of the
function (output)

Data type Integer type
addr
Description Session

information (input)

Data type

Integer type

mes

Description

Program message
(input)

Data type

Character string
type

OutputSiclLan

Sub OutputSiclLan(addr As Integer, message As String)

Dim Status As Integer
Dim actualcnt As Long
Dim length As Long

On Error GoTo ErrHandler
length = Len(message)
Status = ivprintf(addr, message & Chr$(10))

Exit Sub

ErrHandler:

MsgBox "*** Error : " & Error$

Call siclcleanup
End
End Sub

1310

Receiving

Programming

The procedure corresponding to receiving ASCII format messages in
communication is EnterSiclLan. EnterSiclLan uses the ivscanf function of
SICL to receive a message in ASCII format and store it into the output
variable. The ivscanf function takes the session information output from
the iopen function, the format for output, and the data to be output as its

parameters.
Syntax

Status = ivscanf(addr,fmt,ap)

Variable

fmt

Description

Format for output
(input)

Data type

Character string
type

ap

Description

Data to be output
(output)

Data type

Character string
type

For information on the variable (Status) and the variable (addr), refer to

Variable.

In Visual Basic, variables must be declared as a fixed-length string when

receiving string data using the ivscanf function.

EnterSiclLan

Sub EnterSiclLan(addr As Integer, Query As String)

Dim Status As Integer
Dim actualcnt As Long

Dim res As String * 256

1311

E5071C

On Error GoTo ErrHandler
Status = ivscanf(addr, "%t", res)
Query = Trim(res)

Exit Sub

ErrHandler:

MsgBox "*** Error : " & Error$
Call siclcleanup

End

End Sub

The procedure corresponding to receiving array data in communication is
EnterSiclLanArrayReal64, which uses the iread function of SICL to receive
array data in the IEEE 64-bit floating point binary transfer format and store
it into the output variable. The iread function takes the session
information output from the iopen function, the data to be output, the
number of data bytes, the condition to finish reading data, and the number
of data bytes actually read out as its parameters.

Syntax
Status = iread(addr,buf,bufsize,reason,actual)

Variable buf

Description Data to be output (output)

Data type Character string type

bufsize

Description The number of data bytes (input)

Data type Long integer type

reason

Description | The condition to finish reading out data (input)

Data type Integer type

actual

1312

Programming

Description | The number of data bytes actually read out (output)

Data type Long integer type

For information on the variable (Status) and the variable (addr), refer to
Variable.

Each functional part of EnterSiclLanArrayReal64 is described below.
(1) Retrieves the data header.

(2) Stores the number of data bytes into the size variable in the header
part.

(3) Retrieves the formatted data array for trace 1 in channel 1 and stores
it into the databuf variable.

(4) Retrieves the message terminator at the end of the data.

EnterSiclLanArrayReal64

Function EnterSiclLanArrayReal64(addr As Integer, databuf() As Double)
As Long

Dim Status As Integer

Dim actualcnt As Long

Dim buf As String * 8

Dim size As Long

On Error GoTo ErrHandler

"Read header info of "#6NNNNNN"

Status = iread(addr, buf, 8, | TERM_MAXCNT, actualcnt) '................. (1)
size = Val(Mid$(buf, 3, 6)) "....ccevvnnee. (2)

"Read data

Status = iread(addr, databuf, size, | TERM_MAXCNT, actualcnt) "................. (3)
"Read ending LF

Status = iread(addr, buf, 1, _ TERM_MAXCNT, actualcnt) "................. (4)
EnterSiclLanArrayReal64 = size / 8

Exit Function

ErrHandler:

1313

E5071C

MsgBox "*** Error : " & Error$
Call siclcleanup

End

End Function

Disconnection

The iclose function of SICL is used to disconnect communication. The
iclose function takes the session information output from the iopen
function as its parameter.

Syntax
Status = iclose(addr)

For information on the variable (Status) and the variable (addr), refer to
Variable

Sample control

The E5071C can be controlled by executing the above procedures in order,
following the control flow in Flow of control using SICL. This is
demonstrated by the Preset procedure (a procedure that is executed when
the Preset button is clicked) as described in Preset.

Preset

Sub Preset()

" Open Session
E507x = OpenSession

"Presetting the analyzer
Call OutputSiclLan(E507x, ":SYST:PRES")
"Close Session

Call iclose(E507x)

End Sub

1314

Programming

Control Using Telnet Server
e« Overview
« Sample Program in Excel VBA

Other topics about Sample Programs

Overview
This section explains how to control the E5071C by using WinSock API in
the Windows environment.

Sample Program in Excel VBA
Opening ctrl_lan.xls in Microsoft Excel displays the screen shown in the
figure below.

ctrl_lan.xls

E Microsoft Excel - ctri_lan.xis

5] ple Edet Wew (et Format Took Dol BoboPDF Window Melp .8
R = T e +| E - uifMSF‘j".-"J':' =1l =| B F U|E £l = S -
Al - &
A [] [1 E [)] WL
i . o
E | Wirkock Varniea Ll HOTE I _ 1
3 IF dddsn LPZ. 160, 1.1
4 "
Channel 1 B
Stimulus LI"_ ?
St | auery |
B NOTIE Traa 1[0aes 1)
BOE00 20608 e] LOE] 1351
T 00 <00
RN
5O
LT B o
A
200K -0
100K -0
DN
Rl e
30 00
00
| Duts 2
B4 | e 3. 394F9LLLT o
i | ALTEBS00 2. ST2L0538E o
o™ | BEZHT000 2 S4S4RTEY o
7 | 1TITILL00 2.93LE07270 1]
¥ | 170394000 Z.BLTFIAEER]
[0 21ITHFIEO0 T.TRRPILIOE o
80| EESTALOD00 2.75TEELIEG o
| 19TTEAE00 £ 77916488 o
3t | 34 EER000 r_ BLEEE2TLY o 3
oA n"-.'-sheet"-"l-;"'- = - |:t 3
oy KL
e5071c192

For how to use each element in ctrl_lan.xls, refer to the following
description.
1. Enter the version number of WinSock API in the cell to the right side
of "Winsock Version." The version number is obtained by multiplying
256 by the major version and then adding the minor version. For
example, when the version of your Winsock API is 1.1, the version

1315

E5071C

number is obtained as follows: 256*1+1=257. Enter the IP address
of the E5071C in the cell to the right side of "IP Address." This VBA

macro will not work properly without the correct values in these two
cells.

2. In part 2, the sweep range (start and stop points) and the number of
measurement points are set. Click Set to execute the setting
operation as specified with the setting table, while clicking the button
labeled "Query" retrieves the current settings of the E5071C.

3. Part 3 is dedicated to setting the trigger mode.

4. Part 4 sets the measurement parameters and data format for trace 1
in channel 1. Click Set to execute the setting operation as specified
with the setting table, while clicking the button labeled "Query"
retrieves the current settings of the E5071C.

5. In part 5, click Auto Scale to execute auto scaling for trace 1 in
channel 1.

6. Click Read Trace in part 6 to retrieve the formatted data of trace 1 in
channel 1. The data is displayed in tabular and graphical formats.

7. Click Preset to execute the presetting operation.

Description of operation in VBA macro

This section describes the operation of the VBA macro, focusing on the part
related to control with WinSock API.

In order to use WinSock API, you must declare functions and define
variables with a definition file of WinSock API, as shown in Definition file of
WinSock API.

Definition file of WinSock API

"This is the Winsock API definition file for Visual Basic

'Setup the variable type 'hostent’ for the WSAStartup command
Type Hostent

h_name As Long

h_aliases As Long

h_addrtype As String * 2

h_length As String * 2

h_addr_list As Long

End Type

Public Const SZHOSTENT = 16

1316

'Set the Internet address type to a long integer (32-bit)
Type in_addr

s_addr As Long

End Type

'A note to those familiar with the C header file for Winsock
'Visual Basic does not permit a user-defined variable type
'to be used as a return structure. In the case of the
'variable definition below, sin_addr must

'be declared as a long integer rather than the user-defined
'variable type of in_addr.

Type sockaddr_in

sin_family As Integer

sin_port As Integer

sin_addr As Long

sin_zero As String * 8

End Type

Public Const WSADESCRIPTION_LEN = 256
Public Const WSASYS_STATUS_LEN = 128

Public Const WSA_DescriptionSize = WSADESCRIPTION_LEN + 1
Public Const WSA_SysStatusSize = WSASYS_STATUS LEN +1

'Setup the structure for the information returned from
'the WSAStartup() function.

Type WSAData

wVersion As Integer

wHighVersion As Integer

szDescription As String * WSA_DescriptionSize
szSystemStatus As String * WSA_SysStatusSize
iMaxSockets As Integer

iMaxUdpDg As Integer

IpVendorinfo As String * 200

End Type

'Define socket return codes
Public Const INVALID_SOCKET = &HFFFF

Programming

1317

E5071C

Public Const SOCKET_ERROR =-1

'Define socket types

Public Const SOCK_STREAM = 1 'Stream socket

Public Const SOCK_DGRAM = 2 'Datagram socket

Public Const SOCK_RAW = 3 'Raw data socket

Public Const SOCK_RDM = 4 'Reliable Delivery socket

Public Const SOCK_SEQPACKET =5 'Sequenced Packet socket

'Define address families

Public Const AF_UNSPEC = 0 'unspecified

Public Const AF_UNIX =1 'local to host (pipes, portals)
Public Const AF_INET = 2 'internetwork: UDP, TCP, etc.
Public Const AF_IMPLINK = 3 'arpanet imp addresses
Public Const AF_PUP =4 "pup protocols: e.g. BSP

Public Const AF_CHAOS = 5 'mit CHAOS protocols
Public Const AF_NS = 6 'XEROX NS protocols

Public Const AF_ISO = 7 'ISO protocols

Public Const AF_OSI = AF_ISO '0Slis ISO

Public Const AF_ECMA = 8 'european computer manufacturers
Public Const AF_DATAKIT =9 'datakit protocols

Public Const AF_CCITT =10 'CCITT protocols, X.25 etc
Public Const AF_SNA =11 'IBM SNA

Public Const AF_DECnet = 12 'DECnet

Public Const AF_DLI = 13 'Direct data link interface
Public Const AF_LAT =14 'LAT

Public Const AF_HYLINK = 15 'NSC Hyperchannel

Public Const AF_APPLETALK = 16 'AppleTalk

Public Const AF_NETBIOS = 17 'NetBios-style addresses
Public Const AF_MAX = 18 'Maximum # of address families

'Setup sockaddr data type to store Internet addresses
Type sockaddr

sa_family As Integer

sa_data As String * 14

End Type

Public Const SADDRLEN =16

1318

Programming

'Declare Socket functions
Public Declare Function closesocket Lib "wsock32.dIl" (ByVal s As Long) As Long

Public Declare Function connect Lib "wsock32.dll" (ByVal s As Long, addr As sockaddr_in, ByVal
namelen As Long) As Long

Public Declare Function htons Lib "wsock32.dll" (ByVal hostshort As Long) As Integer
Public Declare Function inet_addr Lib "wsock32.dll" (ByVal cp As String) As Long

Public Declare Function recv Lib "wsock32.dlI" (ByVal s As Long, ByVal buf As Any, ByVal buflen As
Long, ByVal flags As Long) As Long

Public Declare Function recvB Lib "wsock32.dll" Alias "recv" (ByVal s As Long, buf As Any, ByVal buflen
As Long, ByVal flags As Long) As Long

Public Declare Function send Lib "wsock32.dll" (ByVal s As Long, buf As Any, ByVal buflen As Long,
ByVal flags As Long) As Long

Public Declare Function socket Lib "wsock32.dll" (ByVal af As Long, ByVal socktype As Long, ByVal
protocol As Long) As Long

Public Declare Function WSAStartup Lib "wsock32.dlI" (ByVal wVersionRequired As Long, [pWSAData
As WSAData) As Long

Public Declare Function WSACleanup Lib "wsock32.dll" () As Long
Public Declare Function WSAUnhookBlockingHook Lib "wsock32.dII" () As Long

Public Declare Sub CopyMemory Lib "kernel32" Alias "RtIMoveMemory” (hpvDest As Any, hpvSource As
Any, ByVal chCopy As Long)

The basic control flow with WinSock API is shown in the figure below:

Control flow with WinSock API

1319

E5071C

—— Startup —
WSAStartup

Y4
— Socket Creation —
socket

v
= Connegtion ———
connect
O
— Communication —

. send
eoelve | recy

— Disconnection
closesockst

Iy
End

WSsAClsanup

BRI

The procedures of each step in Control flow with WinSock API are
described below.

Startup

The procedure corresponding to Startup is Startlt. StartIt launches and
initializes WinSock API with WSAStartup, whose version is shown in part
1 of ctrl_ lan.xls. The function WSAStartup should always be used when
initiating WinSock. This function takes the version number (input) and
launching information (output) as its parameters.

Startit

Sub Startlt()

Dim StartUplnfo As WSAData
'Version 1.1 (1*¥256 + 1) = 257

1320

Programming

'version 2.0 (2*256 + 0) = 512

'Get WinSock version
Sheets("Sheetl1").Select
Range("C2").Select

version = ActiveCell.FormulaR1C1
'Initialize Winsock DLL

x = WSAStartup(version, StartUplnfo)

End Sub

Socket Creation and Connection

The procedure for Socket Creation and Connection is OpenSocket.
OpenSocket makes a connection to an instrument associated with the IP
address specified with the input parameter Hostname. It uses a socket of
the port specified with the input parameter PortNumber. Each functional
part of OpenSocket is described below.

In (1), the inet_aadr function of WinSock API is used to convert an IP
address delimited by "." to an Internet address.

In (2), a new socket is created with the socket function of WinSock API
and its socket descriptor is obtained. If an error occurs, the control returns
to the main program with a message. The socket function takes an address
family (input), a socket type (input), and a protocol number (input) as its
parameters.

In (3), the socket address is specified. Note that htons, which is used for
specifying the port humber, is a function of WinSock API. This function
converts a 2-byte integer from the Windows byte order (little endian) to
the network byte order (big endian).

In (4), a connection to the E5071C is made by using the connect function
of WinSock API. If an error occurs, the control returns to the main program
with a message. The connect function takes a socket descriptor (input), a
socket address (input), and the size of the socket address (input) as its
parameters.

OpenSocket

Function OpenSocket(ByVal Hostname As String, ByVal PortNumber As Intege r) As Integer
Dim |_SocketAddress As sockaddr_in

Dim ipAddress As Long

ipAddress = inet_addr(Hostname) '........... 2)

1321

E5071C

'Create a new socket

socketld = socket(AF_INET, SOCK_STREAM, 0)

If socketld = SOCKET_ERROR Then'

MsgBox ("ERROR: socket =" + Str$(socketld)) ".......... (2)
OpenSocket = COMMAND_ERROR''

Exit Function '

End If'

'Open a connection to a server

|_SocketAddress.sin_family = AF_INET "
|_SocketAddress.sin_port = htons(PortNumber) "........... (3)
| SocketAddress.sin_addr = ipAddress '
|_SocketAddress.sin_zero = String$(8, 0) '

X = connect(socketld, |_SocketAddress, Len(l_SocketAddress)) '
If socketld = SOCKET_ERROR Then'

MsgBox ("ERROR: connect =" + Str$(x)) '..(4)

OpenSocket = COMMAND_ERROR''

Exit Function '

End If'

OpenSocket = socketld

End Function

Communication

The procedure corresponding to Communication is SendCommand.
SendCommand transmits a message (SCPI command) specified with the
input parameter "command" to the E5071C using the send function of
WinSock API. The send function takes a socket descriptor (input), a
message to be transmitted (input), message length (input) and a flag
(input) as its parameters.

SendCommand

Function SendCommand(ByVal command As String) As Integer

1322

Programming

Dim strSend As String

strSend = command + vbCrLf

count = send(socketld, ByVal strSend, Len(strSend), 0)
If count = SOCKET_ERROR Then

MsgBox ("ERROR: send =" + Str$(count))
SendCommand = COMMAND_ERROR

Exit Function

End If

SendCommand = NO_ERROR

End Function

The procedure corresponding to the Receiving part of communication is
RecvAscii and other functions. RecvAscii receives a message in ASCII
format and stores it in the dataBuf output parameter. Maximum length of
the message is specified with the maxLength input parameter. Each
functional part of RecvAscii is described below.

In (1), a message (a response to a query for a SCPI command) is received
from the E5071C as a series of characters using the recv function of
WinSock API. If an error occurs, the control returns to the main program
with a message. The recv function takes a socket descriptor (input), a
message to be received (input), message length (input) and a flag (input)
as its parameters.

In (2), it is determined whether each received character is LF (ASCII code:
10). When it is LF, receiving is terminated by adding NULL (ASCII code: 0)
to the end of the dataBuf string and the control returns to the main
program.

In (3), the number of the last characters that were read out is added to
the count value for checking the number of received characters, and the
characters are appended to the end of the dataBuf string.

RecvAscii
Function RecvAscii(dataBuf As String, ByVal maxLength As Integer) As Integer

Dim ¢ As String * 1

Dim length As Integer

dataBuf ="

While length < maxLength
DoEvents

count = recv(socketld, ¢, 1, 0) '
If count < 1 Then'

1323

E5071C

RecvAscii = RECV_ERROR '............ (1)
dataBuf = Chr$(0) '

Exit Function '

End If'

If ¢ = Chr$(10) Then'

dataBuf = dataBuf + Chr$(0) (2)
RecvAscii = NO_ERROR'

Exit Function '

End If'

length = length + count "............ (3)
dataBuf = dataBuf + ¢ '

Wend

RecvAscii = RECV_ERROR
End Function

Disconnection

The procedure corresponding to Disconnection is CloseConnection.
CloseConnection disconnects communication and removes a socket using
the closesocket function of WinSock API. The closesocket function takes a
socket descriptor (input) as its parameter.

C

Sub CloseConnection()

x = closesocket(socketld)

If x = SOCKET_ERROR Then

MsgBox ("ERROR: closesocket =" + Str$(x))
Exit Sub

End If

End Sub
End

The procedure corresponding to End is EndIt. EndIt disconnects WinSock
API using the WSACIleanup function of WinSock API. The function
WSACleanup should always be used when terminating WinSock.

EndIt
Sub Endlt()

1324

Programming

'‘Shutdown Winsock DLL
X = WSACleanup()

End Sub

Example of control

The E5071C can be controlled by executing the above procedures in order,
following the control flow in Control flow with WinSock API. This is
demonstrated by the procedure autoscale (a procedure that is executed
when the Auto Scale button is clicked) as described in autoscale.
autoscale

Sub autoscale()

"auto scaling

Call Startlt

Call get_hostname

x = OpenSocket(Hostname$, ScpiPort)

x = SendCommand(":DISP:WIND1:TRAC1:Y:AUTO")

Call CloseConnection

Call EndlIt

End Sub

When you execute more than one command by connecting and

disconnecting a socket for every command, the sequence of execution may
change.

1325

E5071C

Control LCD Update Timing
e« Overview
« Sample Program in HT Basic

Other topics about Sample Programs

Overview

This sample program is provided in this section where the command
processing time is improved by controlling the update timing of the LCD
display.
e This sample program correctly runs when the maximum number
of channels/traces is set to 9 channels/9 traces.

This program sets the necessary measurement conditions and then turns
off the updating of the LCD display. Next, it performs measurement, reads
out the result, and updates the screen once. This program repeats this
measurement procedure ten times.

See Improving Command Processing Speed for this programming.
Sample Program in HT Basic (cont_upd.htb)

10 REAL Trace1(1:201,1:2),Trace2(1:201,1:2)

20 DIM Buff$[9],Img$[30]

30 INTEGER Nop,!

40!

50 ASSIGN @Agte507x TO 717

60 ASSIGN @Binary TO 717;FORMAT OFF

70!

80 OUTPUT @Agte507x;":SENS1:SWE:TYPE LIN"

90 OUTPUT @Agte507x;":SENS1:FREQ:CENT 950E6"
100 OUTPUT @Agte507x;":SENS1:FREQ:SPAN 100E6"
110 OUTPUT @Agte507x;":SENS1:SWE:POIN 201"
120 OUTPUT @Agte507x;"TRIG:SOUR BUS"

130 OUTPUT @Agte507x;":INIT1:CONT ON"

140 FOR I=2TO 9

150 OUTPUT @Agte507x;"INIT"&VAL$()&":CONT OFF"
160 NEXT |

170!

180 OUTPUT @Agte507x;":DISP:SPL D1"

190 OUTPUT @Agte507x;":DISP:WIND1:SPL D1_2"
200!

210 OUTPUT @Agte507x;":CALC1:PAR:COUN 2"

1326

Programming

220 OUTPUT @Agte507x;":CALC1:PAR1:DEF S21"
230 OUTPUT @Agte507x;":CALC1:PAR1:SEL"
240 OUTPUT @Agte507x;":CALC1:FORM MLOG"
250 OUTPUT @Agte507x;":CALC1:PAR2:DEF S11"
260 OUTPUT @Agte507x;":CALC1:PAR2:SEL"
270 OUTPUT @Agte507x;":CALC1:FORM MLOG"
280!

290 OUTPUT @Agte507x;":DISP:ENAB OFF"

300 OUTPUT @Agte507x;":FORM:DATA REAL"
310!

320FORI=1TO 10

330 OUTPUT @Agte507x;":TRIG:SING"

340 OUTPUT @Agte507x;"*OPC?"

350 ENTER @Agte507x;Buff$

360!

370! Read Trace Data

380!

390 OUTPUT @Agte507x;":.CALC1:PARL:SEL"
400 OUTPUT @Agte507x;":CALC1:DATA:FDAT?"
410 ENTER @Agte507x USING "#,8A";Buff$

420 ENTER @Binary;Tracel(*)

430 ENTER @Agte507x USING "#,1A";Buff$

440!

450 OUTPUT @Agte507x;":.CALC1:PAR2:SEL"
460 OUTPUT @Agte507x;":CALC1:DATA:FDAT?"
470 ENTER @Agte507x USING "#,8A";Buff$

480 ENTER @Binary;Trace2(*)

490 ENTER @Agte507x USING "#,1A";Buff$

500!

510 ! Update Display

520!

530 OUTPUT @Agte507x;":DISP:UPD"

540 NEXT |

550 END

Description

Lines 50 to 60

1327

E5071C

Assigns a GPIB address to the I/0 pass.
Lines 80 to 110

These lines set the sweep type to linear sweep, the sweep center value to 950 MHz, the sweep span
value to 100 MHz, and the number of measurement points to 201.

Lines 120 to 160

These lines set the trigger source to bus trigger, turn on Continuous Activation mode for channel 1, and
turn the mode off for channels 2 through 9.

Lines 180 to 190
These lines display the window for channel 1 only and arrange two graphs tiled horizontally.
Lines 210 to 270

These lines set the number of traces for channel 1 to 2, the measurement parameter and its data format
for trace 1 to S21 and Log Mag, respectively, and those for trace 2 to S11 and Log Mag, respectively.

Line 290

This line turns Off the updating of the LCD screen.

Line 300

This line sets the data transfer format to binary.

Lines 320 to 540

These lines repeat the following procedure ten times.

Lines 340 to 360: These lines trigger the instrument and wait until the measurement cycle finishes.
Lines 400 to 440: Reads out the formatted data array of trace 1 in channel 1.

Lines 460 to 500: Reads out the formatted data array of trace 2 in channel 1.

Line 540: This line updates the LCD screen once.

1328

Programming

Handler Interface
« Overview
e Program Code

Other topics about Sample Programs

Overview

The sample program communicates with an external instrument through
the handler I/O port.

This program outputs 5 (sets bit 2 and bit 0 to Low, and the other bits to
High) to the port A of the handler I/O port, then waits until the bit 3 of the
port C is set to Low.

See Inputting/Outputting Data for this programming.

Program Code

Excel VBA

Sub Handler_Click()
Dim defrm As Long ‘Session to Default Resource Manager.
Dim vi As Long 'Session to instrument.
Dim Out_Data As Integer 'Decimal value.
Dim In_Data As Long
Dim Bit_stat As Integer
Dim Flag_bit As Integer
Dim Out_Data_Bin As String
Dim Ret As Long 'Return value.
Dim i As Long
Dim X As Long
Const TimeOutTime = 40000 ‘timeout time.
Out_Data_Bin ="00000101" 'Store the output data on the port A (binaly).
Flag_bit=3 'Bit location (bit 3).

Call viOpenDefaultRM(defrm) ‘Initializes the VISA system.
Call viOpen(defrm, "GPIB0::17::INSTR", 0, 0, vi) 'Opens the session to the specified instrument.

Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, TimeOutTime) 'The state of an attribute for the
specified session.

Call viVPrintf(vi, "*RST" & vbLf, 0) 'Presets the setting state of the ENA.
Call viVPrintf(vi, "*CLS" & vbLf, 0) 'Clears the all status register.

1329

E5071C

Call viVPrintf(vi, ":CONT:HAND:C:MODE INP" & vbLf, 0) 'Configures the port C to input port.
Call viVPrintf(vi, ":CONT:HAND:IND:STAT ON" & vbLf, 0) 'Line enable /INDEX signal.

Call viVPrintf(vi, ":CONT:HAND:RTR:STAT ON" & vbLf, 0) 'Line enable /READY FOR TRIGGER
signal.

Fori=1To Len(Out_Data Bin) 'Convert Out_Dara_ Bin to a decimal value.
If Mid(Out_Data_Bin, Len(Out_Data_Bin) -i+ 1, 1) ="1" Then
X=2"(-1)
Ret = Ret + X
End If
Next i
Out Data=Ret 'Sets the decimal value.
Call viVPrintf(vi, :CONT:HAND:A " & Ret & vbLf, 0) 'Sets to the port A.

Call viVPrintf(vi, ":CONT:HAND:C?" & vbLf, 0) 'Outputs data to output port C.
Call vivScanf(vi, "%t", In_Data) 'Reads data from the port C.

Call ErrorCheck(vi) ~ 'Checking the error.

Call viClose(vi) 'Closes the resource manager session.
Call viClose(defrm) 'Breaks the communication and terminates the VISA system.

End
End Sub
Sub ErrorCheck(vi As Long)
Dim err As String * 50, ErrNo As Variant, Response

Call vivQueryf(vi, :SYST:ERR?" & vbLf, "%t", err) 'Reads error message.
ErrNo = Split(err, ",") 'Gets the error code.

If Val(ErrNo(0)) <> 0 Then
Response = MsgBox(CStr(ErrNo(1)), vbOKOnly) 'Display the message box.
End If
End Sub

HT Basic (handler.htb)

10 INTEGER Out_data,In_data,Bit_stat
20 DIM Out_data_hin$[9]

1330

30!

40 ASSIGN @Agte507x TO 717

50!

60 Out_data_bin$="00000101"

70 Flag_bit=3

80!

90 OUTPUT @Agte507x;":CONT:HAND:C:MODE INP"
100 OUTPUT @Agte507x;":CONT:HAND:IND:STAT ON"
110 OUTPUT @Agte507x;":CONT:HAND:RTR:STAT ON"
120!

130 Out_data=IVAL(Out_data_hin$,2)

140 OUTPUT @Agte507x;":CONT:HAND:A ";Out_data
150!

160 REPEAT

170 OUTPUT @Agte507x;":CONT:HAND:C?"

180 ENTER @Agte507x;In_data

190 Bit_stat=BIT(In_data,Flag_bit)

200 UNTIL Bit_stat=1

210 END

Programming

1331

E5071C

Controlling E5091A
o Overview
« Sample Program in Excel VBA
e Sample Program in HT Basic

Other topics about Sample Programs

Overview

This program assigns Port 1 of the E5091A to A, Port 2 to T2, Port 3 to R2,
and Port 4 to R2 and sets Line 1 and Line 3 of the control line to HIGH.

See Controlling E5091A by Programming for this programming.

Sample Program in Excel VBA
Sub e5091ctrl_Click()

Dim defrm As Long 'Session to Default Resource Manager
Dim vi As Long ‘Session to instrument
Dim Portl As String
Dim Port2 As String
Dim Port3 As String
Dim Port4 As String
Dim Linel As String
Dim Line2 As String
Dim Line3 As String
Dim Line4 As String
Dim Line5 As String
Dim Line6 As String
Dim Line7 As String
Dim Line8 As String
Dim Data_Bin As String
Dim Data_Dec As Long
Dim i As Integer
Dim X As Long
Dim Model As String

Const TimeOutTime = 20000

Model = "E5091_9" '‘Model E5091A-009
Portl ="A" 'Portl = A
Port2 ="T2" '‘Port2 =T2

1332

Port3 = "R2"
Port4 = "R2"

Linel ="1"
Line2 ="0"
Line3="1"
Line4 ="0"
Line5 ="0"
Line6 ="0"
Line7 ="0"
Line8 ="0"

'Port3 = R2
'Port4d = R2

‘Linel = High
'Line2 = Low
'Line3 = High
'Line4 = Low
‘Line5 = Low
'Line6 = Low
‘Line7 = Low
'Line8 = Low

Call viOpenDefaultRM(defrm)

Call viOpen(defrm, "GPIB0::17::INSTR", 0, 0, vi)
specified instrument.

Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, TimeOutTime) ‘The state of an attribute
for the specified session.

Call viVPrintf(vi, "*RST" & vbLf, 0)
Call viVPrintf(vi, "*CLS" & vbLf, 0)

Programming

'Initializes the VISA system.
'Opens the session to the

'Presets the setting state of the ENA.
'Clears the all status register.

Call viVPrintf(vi, :SENS1:MULT1:NAME " & Model & vbLf, 0) ‘Specifies the test set

name.

Call viVPrintf(vi, :SENS:MULT:PORT1 " & Portl & vbLf, 0)

to A

Call viVPrintf(vi, :SENS:MULT:PORT2 " & Port2 & vbLf, 0)

to T2

Call viVPrintf(vi, :SENS:MULT:PORT3 " & Port3 & vbLf, 0)

to R2

Call viVPrintf(vi, “SENS:MULT:PORT4 " & Port4 & vbLf, 0)

to R2

Call ErrorCheck(vi)

'Sets the port assigned to port 1
'Sets the port assigned to port 2
'Sets the port assigned to port 3

'Sets the port assigned to port 4

‘Checking the error.

Data_Bin = Line8 & Line7 & Line6 & Line5 & Line4 & Line3 & Line2 & Linel

Fori=1To Len(Data_Bin)
If Mid(Data_Bin, Len(Data_Bin) - i+ 1, 1) ="1" Then

'Creates a decimal setting value.

1333

E5071C

X=2"(i-1)
Data_Dec = Data_Dec + X
End If
Next i
Call viVPrintf(vi, :SENS:MULT:OUTP " & CStr(Data_Dec) & vbLf, 0) 'Sets the control line.

Call viVPrintf(vi, :SENS:MULT:DISP ON" & vbLf, 0) ‘Turns on the E5091A property
display.

Call viVPrintf(vi, :"SENS:MULT:STAT ON" & vbLf, 0) ‘Turns on the control of the
E5091A.

Call ErrorCheck(vi) 'Checking the error.

Call viClose(vi) 'Closes the resource manager session.

Call viClose(defrm) 'Breaks the communication and terminates
the VISA system.

End 'End
End Sub

Sub ErrorCheck(vi As Long)
Dim err As String * 50, ErrNo As Variant, Response

Call vivQueryf(vi, :.SYST:ERR?" & vbLf, "%t", err) 'Reads error message.
ErrNo = Split(err, ",") 'Gets the error code.
If Val(ErrNo(0)) <> 0 Then
Response = MsgBox(CStr(ErrNo(1)), vbOKOnly) 'Display the message box.
End If
End Sub

Sample Program in HT Basic (e5091ctr_2.htb)
10 DIM Port19[3],Port2$[3],Port3$[3],Port4$[3],Data_hin$[9]
20 DIM Line1$[3],Line2$[3],Line3$[3],Line4$[3]
30 DIM Line5$[3],Line6$[3],Line7$[3],Line8$[3]
40 DIM Model$[8]
50 INTEGER Data_dec
60!
70 ASSIGN @Agte507x TO 717
80!

1334

90 Model$="E5091 9" ! Model:E5091A-009
100!

110 Port1$="A"! Portl: A
120 Port2$="T2" ! Port2: T2
130 Port3$="R2" ! Port3: R2
140 Port4$="R2" ! Port4: R2
150!

160 Line1$="1"! Linel: HIGH
170 Line2$="0"! Line2: Low
180 Line3$="1"! Line3: HIGH
190 Line4$="0"! Line4: Low
200 Line5%="0"! Line5: Low
210 Line6%="0"! Line6: Low
220 Line7$="0"! Line7: Low
230 Line8$="0"! Line8: Low
240!

250 OUTPUT @Agte507x;":SENS1:MULT1:NAME "&Model$

260!

270 OUTPUT @Agte507x;":SENS1:MULT1:PORT1 "&Port1$
280 OUTPUT @Agte507x;":SENS1:MULT1:PORT2 "&Port2$
290 OUTPUT @Agte507x;":SENS1:MULT1:PORT3 "&Port3$
300 OUTPUT @Agte507x;":SENS1:MULT1:PORT4 "&Port4$

310!

320 Data_bin$=Line8%&Line7$&Line6$&Line5%&Lined$&Line3s&Line2$&Lineld

330 Data_dec=IVAL(Data_hin$,2)

340 OUTPUT @Agte507x;":SENS1:MULT1:0OUTP ";Data_dec

350!

360 OUTPUT @Agte507x;":SENS:MULT1:DISP ON"
370 OUTPUT @Agte507x;":SENS:MULT1:STAT ON"

380!
390 END

Programming

1335

E5071C

Built-in VBA Programming

Built-in VBA Programming

Introduction to VBA Programming
Operation Basics

Controlling E5071C

Controlling Peripherals
Application Programs

Complex Operation Library
Waveform Analysis Library

Other topics about Programming

1336

Programming

Introduction to VBA Programming
Introduction to VBA Programming

o Introduction of the E5071C Macro Function
 An Overview of a Control System Based on the Macro Function
o Overview of E5071C COM Object

1337

E5071C

Introduction of the E5071C Macro Function
e Overview
¢ Macro Function

Other topics about Introduction to VBA Programming

Overview

The E5071C has a built-in macro function that allows a single instruction to
substitute for multiple instructions. You can have the E5071C automatically
execute your own macro program that contains a series of VBA (Visual
Basic for Application) statements. The macro function allows you to run a
variety of applications; you can control not only the E5071C but also
various peripherals from your own macro code.

The VBA is based on the VB (Visual Basic) programming language.
Although the VBA is similar to the VB, they are not the same. The VBA is
decreased some of the VB's features and added characteristic features for
each application. The E5071C VBA is added features for controlling the
E5071C. For details of difference between the VBA and the VB, refer to
Microsoft official guides, and various books on VBA.

For information on the basic operating procedures for the E5071C's VBA,
see Operation Basics. This manual is hot meant to be an in-depth guide to
VBA programming basics and the syntax of VBA functions and commands.
Such in-depth information is covered in VBA Help, Microsoft official guides,
and various books on VBA.

The built-in VBA can not control the ENA option TDR application.

Macro Function

The macro function allows you to control the E5071C itself as well as
various peripherals. You can do the following:

1. Automate repetitive tasks
You can use the E5071C's macro function to combine several
processes into one. Automating repetitive tasks provides higher
efficiency and eliminates human error. Once you have contained
repetitive tasks in Sub procedures, you can later call the procedures
from other programs, thus allowing effective reuse of programming
assets.

2. Implement a user interface
The E5071C VBA supports user forms that simplify creating a visual
user interface. User forms guide users through common tasks such
as performing measurement and entering data, without requiring
familiarity with the E5071C, thus minimizing the possibility of human
error.

1338

Programming

An Overview of a Control System Based on the Macro Function
o Overview
o Implementing a Control System

o Required Equipment
o Control Methods
Other topics about Introduction to VBA Programming

Overview

This section describes how you can use the E5071C's built-in VBA macro
function to implement a system that controls the E5071C and peripherals,
and what command sets are available for such purposes.

Implementing a Control System

Macro-based control systems are classified into two types: As shown in the
following figure, a VBA control system controls the E5071C itself while a
VBA remote control system controls peripherals. When you use the macro
function to control peripherals, you must connect the E5071C with the
peripherals through USB/GPIB interface, USB or LAN, and configure them
to communicate over VISA (Virtual Instrument Software Architecture). For
information on programming using the VISA library, refer to Programming
with VISA.

Configuration example of control system using macro environment

s . USE Hest Pert GPIB
‘ll USBIGPIB Interface > | Peripherals
VBA Macro USE Host Pori Ugf {USBTHC] Inferface Pori
Environment UBE Cable | Peripherals
© 5> 6 © l "24: LN
LAMN) Peripherals
VBA Confrol System
s
Required Equipment
« E5071C

« Peripherals and/or other instruments that serve your purpose
« USB/GPIB interface, USB Cable, or LAN

Control Methods

1339

E5071C

The command set you can use differs depending on whether you use the
macro function to control the E5071C or a peripheral.

Controlling the E5071C

When you want to control the E5071C itself, you can create a program
using COM objects within the E5071C VBA environment. COM objects that
come with the E5071C include seven objects specific to the COM interface
and COM objects that correspond to SCPI commands.

Controlling a Peripheral

When you want to control a peripheral, you can create a program using
VISA library functions within the E5071C VBA environment.

For information on using the VISA library, see Controlling Peripherals. For a
complete description of VISA functions, refer to the VISA library's online
help.

For information on the GPIB commands available with a particular
peripheral, refer to the documentation that comes with the peripheral.

1340

Programming

Overview of E5071C COM Object
e« Overview
o About COM Object

e Property
e Method
e Event

e Using COM Object to Control E5071C
« Major Control Difference between COM Object and SCPI Command
Other topics about Introduction to VBA Programming

Overview

The E5071C VBA environment provides COM objects that support
controlling the E5071C. This section provides an overview of COM objects
as well as considerations for using the E5071C's COM objects.

The definitions and specifications of COM are beyond the scope of this
guide. Such in-depth information is covered in a variety of books on COM.
About COM Object

When you control the E5071C through the macro function, you can use
COM objects as components of your application. The functionality of the
E5071C's COM objects is exposed through properties and methods.

Property

A property allows you to read or write a setting or attribute of an object.
With the E5071C, you can use properties to set or read the settings of the
E5071C.

You can find properties in the list of object types in COM Object Reference.

Method

A method allows you to manipulate an object in a particular way. With the
E5071C, you can use methods to perform specific tasks.

You can find methods in the list of object types in COM Object Reference.

Event

An event means an operation from outside that the program can recognize
such as clicking a mouse. The E5071C detects events that a specific
softkey is pressed using the UserMenu_OnPress(ByVal Key_id As Long)
procedure to execute the assigned procedure.

You can find events in the list of object types in COM Object Reference.
Using COM Object to Control E5071C

When you want to control the E5071C, you can use COM objects alone or
in conjunction with SCPI commands and the Parse object. The latter
method is a little slower than the former method because the Parse object

1341

E5071C

is used to parse the messages of SCPI commands. For instructions on
using the E5071C's VBA Editor to create a program that uses COM objects,
refer to Operation Basics of the E5071C's VBA.

Major Control Difference between COM Object and SCPI Command

While the control using SCPI commands allows SRQ (Service Request)
interrupts through the status reporting mechanism, the control using COM
objects does not support SRQ interrupts. Instead of SRQ interrupts, you
can use the WaitOnSRQ object to suspend the program until the E5071C is
put into the desired state.

1342

Programming

Operation Basics
Operation Basics

» Displaying Visual Basic Editor

o Closing Visual Basic Editor

o Switching to the E5071C Measurement Screen
« Making a Preparation Before Coding

o Coding a VBA Program

« Saving a VBA program

o Loading a VBA Program

« Running a VBA Program

« Stopping a VBA Program

o Errors and Debugging

e Printing Output Values in the Echo Window
o Uses Advanced Techniques

e Using VBA Online Help

1343

E5071C

Displaying Visual Basic Editor
o Overview

Initial Screen of Visual Basic Editor
Other topics about Operation Basics

Overview

This section describes how to launch Visual Basic Editor.

From the E5071C measurement screen, launch Visual Basic Editor using
one of the following methods:

1. Macro Setup > VBA Editor
2. Press Alt + F11 keys on the keyboard.

Initial Screen of Visual Basic Editor

When you launch Visual Basic Editor, it displays the initial screen, which
contains a number of windows as shown in the following figure. The initial
screen provides the following GUI elements:

Example of Visual Basic Editor initial screen

o Microsofi Visual [Rasic - YVHAProject

Ble B Yew jroert Fomat [ebag fun ook Sddin Wirdes peb

Ea-a B0 e MiNEE S0 5 .. @
Pragject - VIkPropert (2
R

o

Propetties - VidPvulr © bt

VBAProject Froject
Mgt

e | [T

®

e5071c119

1. Menu bar
2. Toolbar
3. Project Explorer

1344

Programming

4. Property Window

Menu Bar

Clicking one of the menu labels brings up the corresponding menu. The

menu bar can be used as the primary method to navigate through
E5071C's VBA environment.

Toolbar

The toolbar provides access to commonly used commands via icon

buttons; these commands are a subset of the commands accessible from
the menu bar.

Insert User Form/ Standard Module' Class Module/ Procedure

Cut Ppaste Execute Macro Project Explorer
Undo Stop Macro
File Hdit Wiew ert FEdgmat Debug Fun fools Add-Ins WigHow Help &——— Menu Bar
- Jﬂﬁﬂ ﬂT T MEY ?‘E——*TMIBM
Copy Redo VBA Help
Save Project Files Searcl Props iy

E 1 FALGN Window | Tool Box

View ESOT1C Design Mode
Object Browser
Pause Macro !

efhd71c120

Project Explorer

Within the E5071C's VBA environment, you can develop your application as
a project that consists of a number of files (modules). Project Explorer
shows a list of all files (modules) that make up a project. The list also
includes files (modules) created or loaded in Visual Basic Editor. For
information on modules, refer to A Project and Three Types of Module.

To display the project explorer, do one of the following:

1. On the View menu, click Project Explorer.
2. Press Ctrl + R keys on the keyboard.

3. On the toolbar, click %

Property Window

A property window shows the settings (label, font, color, size, etc.) of a

control (such as a command button or text box) placed on the user form.
For information on user forms, refer to User Form.

You can also set properties by programming in the code window.

1345

E5071C

To display the properties window, do one of the following:

1. On the View menu, click Properties Window.
2. Press F4 key on the keyboard.

3. On the toolbar, click B

1346

Programming

Closing Visual Basic Editor

This section describes how to quit Visual Basic Editor. Close the Visual
Basic Editor using either one of the following methods:

« On Visual Basic Editor's File menu, click Close and Return to E5071.
« Within Visual Basic Editor, press Alt + Q keys on the keyboard.
e Macro Setup > Close Editor (E5071C measurement screen)

« Whenever you launch Visual Basic Editor, it automatically
displays the project files you were working with in the previous
session. However, once you turn off the power to the E5071C,
the project files kept in memory will be lost; therefore, it is
strongly recommended to save your VBA programs before you
turn off the power.

Other topics about Operation Basics

1347

E5071C

Switching to the E5071C Measurement Screen

You can switch to the E5071C measurement screen without closing Visual
Basic Editor.

o On the View menu, click E5071.
o Press Alt + F11 keys on the keyboard.
e On the toolbar, click "E5071C" icon.
o Press Focus key on the E5071C front panel.

Other topics about Operation Basics

1348

Programming

Making a Preparation Before Coding
e A Project and Three Type of Modules
o Displaying a Code Window

Other topics about Operation Basics
A Project and Three Type of Modules

Project Explorer displays a list of files (modules) that are used in the
E5071C VBA. This section describes a project composed of a number of
files (modules) and three types of modules ("user form", "standard," and
"class"). Each type of module serves its own purposes as described below.

Project

When you develop an application within the E5071C's VBA environment,
you use a number of VBA program files (modules), and manage them as
one project. The project is saved with the file extension ".vba".

User Form

A user form contains controls such as buttons and text boxes. You can
code event-driven procedures that are invoked when a particular event
occurs on a particular control, thereby creating a user interface. The user
form is saved with the file extension ".frm".

Standard module

A standard module contains a collection of one or more procedures
(subprograms enclosed between Sub and End Sub). One typical use of a
standard module is to contain shared subroutines and globally called
functions. The standard module is saved with the file extension ".bas".

Class Module

A class module contains both data and procedures and acts as one object.
Once you have created a class module that serves as an object, you can
create any number of instances of that object by naming each instance as
an object variable. While each procedure must be unique in a standard
module, you can have multiple instances of an object created through a
class module. The class module is saved with the file extension ".cls".

Displaying a Code Window

The code windows appear on the Visual Basic Editor by inserting the
modules in a project. You can do coding (programming) on this code
windows practically.

The E5071C's VBA environment does not allow you to manage multiple
projects. When the current project is existing in the Visual Basic Editor by

1349

E5071C

loading the saved project file, you can replace the current project with a
new project by the following method from the E5071C measurement
screen.

1. Macro Setup > New Project

2. When you replace the current project with a new project, the
message whether or not the current project is saved may
appear. If you want to save the project, click Yes button to
display a dialog box for saving. For saving the project, see
Saving a Project.

Inserting the User Form

Within Visual Basic Editor, do one of the following to add a user form to
your project.
1. On the Insert menu, click UserForm.

2. On the toolbar, click "Insert User Form/Standard Module/Class
Module/Procedure" icon, and click UserForm.

3. In Project Explorer, right-click the "VBAProject" icon, and click Insert
> UserForm.

4. Adding a user form does not automatically open the code
window for that user form. To open the code window, click the
"Display Code" icon on Project Explorer in the following figure or
double-click a control placed on the user form.

Adding a user form

1350

Programming

o Micresoli Visual Besic - YHAPro jeci [l =
G R Yew oot Fomst Debg fun ok Sddim Wiedow feln
Ea-8 8 m - e HFERE
om B —
[T—— T v el aisiia 5

I e —— Display Objects 2
= 5N Forwg.
Bl UsacPormi

Display Code

Form Designer

es071c130

Inserting the Standard Module

Within Visual Basic Editor, do one of the following to add a standard
module to your project.

1. On the Insert menu, click Module.

2. On the toolbar, click "Insert User Form/Standard Module/Class
Module/Procedure" icon, and click Module.

3. In Project Explorer, right-click the "VBAProject" icon, and click Insert
> Module.

Adding a standard module/class module

1351

E5071C

mmhmwmuwmnwm
Ea- 8 ceMl- = p pga Y2 B
oot - YOAPIupeCt]

lassl Classiode +
sphaberx | Categerized |
Claat
liroraceey 1 - Frie

Name Property Class Window
{Class Module)
Code Window
{Standard Module)
Object Name
es0T1c13H

Inserting the Class Module

Within Visual Basic Editor, do one of the following to add a class module to
your project.
1. On the Insert menu, click ClassModule.

2. On the toolbar, click "Insert User Form/Standard Module/Class

Module/Procedure" icon, and click ClassModule.

. In Project Explorer, right-click the "VBAProject" icon, and click Insert
> ClassModule.

Deleting Modules

You can delete any unnecessary module from the project within Visual

Basic Editor. The following procedure assumes that you want to delete a
class module named "Class1".

1352

Programming

. In Project Explorer, click the "Class1" class module under the "Class
Modules" icon to highlight it.

. Delete the "Class1" class module using one of the following methods:
a. On the File menu, click Remove Class1....
b. Click the right mouse button, and click Remove Class1....

. When you are prompted to confirm whether to export (save)
"Class1", click No. Alternatively, you can click Yes if you want to save
the module.

1353

E5071C

Coding a VBA Program
e Overview
e User Interface Elements of a Code Window

e Creating a Simple VBA Program

o Auto-complete Feature

Other topics about Operation Basics

Overview

This section provides descriptive information on the user interface
elements of a code window that lets you code a VBA program, and walks
through a sample program (procedure) that finds the maximum value
contained in an array so you can gain insight into how to create your own
programs.

User Interface Elements of a Code Window

A code window is where you code a VBA program. When you are working
with a user form, you can open the code window for that user form by
double-clicking a control (such as a button or text box) placed on the form.
Similarly, when you are working with a standard or class module, you can
open the code window associated with that module by double-clicking the
module's icon in Project Explorer.

Code window for a standard module

1354

Programming

neral) x| [samplet E_—Il- 2

Oprion Base 1 a

Sub Samplel ()

i
Dim defrm As Long "Session to Default Rescucce Hanager
Dim AgtEna A= Long "Ses=ion to lnSCrument

Dim Result A= Scring T 200

Dim Resz A=z Variant

Dim i A= Integer

Dim w1 A= Long

Con=t TimsOurTims = 20000

Call viOpenDefaultRH (defrm)
Call viOpen (defcrm, "GPIBD::17::INSTR™, 0. 0, wi)
Call viSetAtcribute (vi, VI ATTR THO VALUE, TimeoucTime)

Call viVPrintE(vi, "TRST" 4+ vhLf, O)
Call viVPrintf(vi, "*OPT?" + vhLf, 0]

Call wiV3canf (vi, "st™, Result)
5
ﬂJ

e5071c251
1. Object box
Provides a list of objects currently used within the code window.

2. Procedure box

Provides a list of procedures that reside within the code window. When you
are working with a user form, this provides a list of events (actions such as
click or double-click).

3. Margin indicator bar
Primarily intended for use when debugging a program.

4. Show Procedure button

Displays only the procedure at the cursor position.

5. Show Module button

Displays the entire program contained in the code window.
Creating a Simple VBA Program

1355

E5071C

This section walks through a sample program that finds the maximum
value contained in an array while breaking down the code into a humber of
blocks and describing what they do. Line numbers are added for
description purpose only, and do not appear in the actual program source
code.

Sample program that finds the maximum value contained in an
array

10| Option Explicit

20|

30| Sub Maximum()

40|

50| Dim q As Variant

60| Dim x(100) As Integer

70| Dim i As Integer, n As Integer

80| Dim Start As Integer, Last As Integer, Num As Integer
90| Dim Maximum As Integer

100]

110| ' Defining the array

120| q = Array(7, -2, 3, -20, 15, -6, 27, -12, 9, -5, 18, 23, _
130] 9, -16, 22, 0)

140|

150| Start = LBound(q)

160| Last = UBound(q)

170| Num = Last - Start + 1

180]

190| For i = Start To Last

200] x(i) = q(i)

210| Next i

220

230| Maximum = x(Start)

240

250| For n = Start + 1 To Last

260 If x(n) > Maximum Then Maximum = x(n)
270| Next n

280

290| MsgBox Maximum

300

310| End Sub

1356

Programming

Let us break down the code into a number of blocks and see what they do.

Line 10

This instruction mandates explicit declaration of variables.

Lines 30 to 310

The code enclosed between Sub Maximum() and End Sub will be executed
within the E5071C's macro environment. Thus enclosed code is called a
procedure. In this example, "Maximum" is the procedure name.

Lines 50 to 90

These lines declare data types of variables using Dim statements. A
statement is the minimum instruction unit based on the syntax. The
sample program declares the variable "g" as Variant, and the variables
"x(100)", "i", "n", "Start", "Last", "Num", and "Maximum" as Integer. For a
complete list of statements and data types supported by VBA, see VBA
Online Help.

Line 110

Any text preceded by a comment indicator (') is treated as a comment.

Lines 120 to 130

These lines use VBA's Array function to initialize the array. The q() array
contains elements delimited with commas in the ascending order of index
numbers (zero-based). A combination of a space and underscore (_) is
used to continue the statement across two or more lines.

Line 150

Stores the starting index number of the q array into the Start variable.

Line 160

Stores the last index number of the g array into the Last variable.

Line 170

Stores the number of elements in the q array into the Num variable.

Lines 190 to 210 and Lines 250 to 270

The code within each For ...Next statement is iterated until the counter
reaches the specific number.

1357

E5071C

Line 200

Stores the contents of the g array (Variant) into the x variable (Integer).

Line 230

Uses the first element of the x array as the tentative maximum value.

Line 260

Compares the tentative maximum value with each of elements that follow;
if an element is larger than the tentative maximum value, then that
element is used as the tentative maximum value.

Line 290

Uses a message box function to display the maximum value. For a
complete list of functions supported by VBA, see VBA Online Help.

The above sample program consists of a single
procedure contained in a single module. However, when you
deal with procedures and variables across multiple modules, you
should be aware of the scope of variables and procedures.

Auto-complete Feature

When you use COM objects in Visual Basic Editor, the editor's auto-
complete feature allows you to easily type in keywords without misspelling
them.

The following procedure assumes that you are entering the
SCPI.INITiate(Ch).CONTinuous object.

1. In a standard module, type sub main and press the Enter key. End
Sub is automatically added.

2. Typing scpi followed by a dot (.) brings up a list of classes under the
SCPI class.

Typing in automatically moves focus to INITiate in the list box.
Typing (brings up a list of indexes.

Typing 1). brings up a list of classes under the INITiate class.

Typing ¢ automatically moves focus to CONTinuous in the list box.
Typing = brings up a list box for setting a Boolean value (True/False).
Typing t automatically moves focus to True.

N

Pressing the Enter key completes the statement:
SCPI.INITiate(1).CONTinuous = True.

1358

Programming

Saving a VBA program
e« Overview
« Saving a Project
e Saving a Module (Exporting)

Other topics about Operation Basics

Overview

You can save VBA programs either as one complete project or on a module
by module basis.

Saving a Project

When you opt to save your program as one complete project, you can have
the files (modules) making up the project into a single package. A project
is saved as a .vba file. You can save your program to a project file using
one of the following two methods:

Saving a Project from Visual Basic Editor

1. Open the Save As dialog box by doing one of the following:

o On the File menu, click Save xxx.VBA. "xxx" represents the file
name.

e On the toolbar, click "Save Project File" icon.
e Press Ctrl + S keys on the keyboard.
2. The Save As dialog box appears. Specify the file name and location
(drive or folder) and click Save.

E5071C Saving a Project from the E5071C Measurement Screen

1. Display the E5071C measurement screen following the instructions
given in Switching to the E5071C Measurement Screen.

2. Open the Save As dialog box using the following key sequence:
e Macro Setup > Save Project

3. The Save As dialog box appears. Specify the file nhame and location
(drive or folder) and click Save.
Saving a Module (Exporting)

Alternatively, you can save each module (user form, standard, or class) of
your VBA program individually. To save a module, you must use Visual
Basic Editor. User forms are saved as .frm files, standard modules as .bas
files, and class modules as .cls files.

1. In Project Explorer, click the file name that appears under the
desired module icon to highlight it.

1359

E5071C

2. Open the Export File dialog box by doing one of the following:
e On the File menu, click Export File....
o Click the right mouse button, and click Export File....
o Press Ctrl + E keys on the keyboard.

3. The Export File dialog box appears. Specify the file name and location
(drive or folder) and click Save.

1360

Programming

Loading a VBA Program
e Overview
o Loading a Project

Other topics about Operation Basics
Overview

Once you have saved a project or module file, you can load it later
whenever necessary.

Loading a Project

You can load a saved project file either from the E5071C measurement
screen or by specifying that the project file be automatically loaded when
the power is turned on.

Loading a Project from the E5071C Measurement Screen

1. Press Macro Setup key, then click Load Project.

When the another project has already been
loaded on the Visual Basic Editor, the message whether or
not the current project is saved may appear. If you want
to save the project, click Yes button to display a dialog
box for saving. For saving the project, see Saving a
Project.

2. The Open dialog box appears. Specify the file name and location
(drive or folder) of the file you want to load and click Open.
Open dialog box
15011 et =[]

es071c129

The Open dialog box has the following user interface elements:

1. Look in: Specify the location (drive or folder) where the project
resides.

1361

E5071C

2. File name: Specify the file name of the project you want to load.

3. Files of type: Select the type of the file you want load. Normally, you
should select VBA Project Files [*.vba].

4. Open: Clicking this button loads the project.

5. Cancel: Clicking this button closes the Open dialog box and brings
you back to the main screen.

Automatically Loading a Project at Power-On

Once you have saved a project file that satisfies the following conditions,
the project will be automatically loaded whenever the power is turned ON.

Auto-loaded project Conditions

Directory where the project resides. A:\ or D:\

Project file name autoload.vba

If there is the file named "autoload.vba" in both the A drive and the D
drive, the file in the A drive is used.

Loading a Module (Importing)

To load a saved module into a project, you must use Visual Basic Editor.

1. In Project Explorer, click the file name that appears under the
desired module icon to highlight it.

2. Open the Import File dialog box by doing one of the following:
e On the File menu, click Import File....

e In Project Explorer, right-click the "VBAProject" icon, and click
Import File....

e Press Ctrl + M keys on the keyboard.

3. The Import File dialog box appears. Specify the file name and
location (drive or folder) of the file (module) you want to load and
click Open.

4. The Import File dialog box has the following user interface elements:
Import File dialog box

1362

Programming

Import File

Look, in:]C}Test LJ o~ EF -

2 = s
Files of type: |41l Files %) -l Cancel |(-— 5
T Help |(-— 6

3

es071c128

The Import File dialog box has the following user interface elements:

1.

Look in: Specify the location (drive or folder) where the module
resides.

File name: Specify the file name of the module you want to load.

Files of type: Select the type of the file you want load. Normally, you
should select VB Files [*.frm,*.bas,*.cls].

Open: Clicking this button loads the module.

. Cancel: Clicking this button closes the Import File dialog box and

brings you back to the main screen.

. Help: Clicking this button brings up VBA Online Help.

1363

E5071C

Running a VBA Program
e« Overview
o Running a Previously Loaded VBA Program
 Running a Program from the_E5071C_Measurement_Screen

« Loading and Executing Programs in Batch Process

Other topics about Operation Basics
Overview

The E5071C provides 2 methods to execute a VBA program: executing a
program that you previously loaded and loading and executing a program
in a batch process. The execution status of the VBA program is indicated in
the instrument status bar, as shown in the following figure. "Run" indicates
that the program is running while "Stop" indicates that the program is
stopped.

Instrument status bar indicating the status of the VBA program

es071c132

Running a Previously Loaded VBA Program

Running a Program from Visual Basic Editor

The E5071C allows you to run a previous loaded VBA program using one of
the four methods listed below.

1. Open the Macros dialog box by doing either one of the following:
e On the Run menu, click Run Macro.
e On the Tools menu, click Macros....
e On the toolbar, click "Run Macro" icon.
o Press F5 key on the keyboard.

Doing the above steps with the cursor positioned
within a procedure in the code window immediately runs the
program without displaying the Macros dialog box.

1. In the Macros dialog box, select the VBA program (procedure name)
you want to run, and click the Run button.

Macros dialog box

1364

Programming

from— |

1
Macro Mame:
|main ‘i‘ Fan — 3
S *__ 4
”—+—_ 3
&t 6
9 _cee o=
'—*__ 8
Macros Int | yEAPraject ﬂ
edd71c133

The Macros dialog box has the following user interface elements:

1.

7.
8.

Macro Name: Select the VBA program (procedure name) you want to
run from the list box so its name appears here.

. Macro In: Specify the project that contains the VBA program you

want to run. Normally, use the default.

. Run: Clicking this button runs the selected VBA program

(procedure).

. Cancel: Clicking this button closes the Macros dialog box and brings

you back to the main screen.

. Step Into: Clicking this button brings up Visual Basic Editor and put it

into step-in mode, where the selected VBA program is run step by
step. This mode is primarily intended for use when debugging a VBA
program. For more information on step-in mode, see Debug Toolbar.

. Edit: Displays the code of the selected VBA program. You can use

this for re-editing your code.
Create: This button is normally dimmed.

Delete: Clicking this button deletes the selected VBA program. Take
care not to inadvertently delete your VBA program before saving it.

The Macros dialog provides access to subprograms (procedures enclosed
between Sub and End Sub) created in a standard module.

Running a Program from the E5071C Measurement Screen

1365

E5071C

The E5071C allows you to run a program from E5071C screen using one of
the four methods listed below.

1. Display the E5071C measurement screen following the instructions
given in Switching to the E5071C Measurement Screen.

2. Run the VBA program (procedure) using the following key sequence:

e Macro Setup > Select Macro - Module xxx
where "Module" is the object name (Name property shown in the
property window) and "xxx" is the procedure name.

o Press the Macro Run key on the E5071C front panel. For a program
to be run from the measurement screen, its procedure name must be
"Main" (subprogram enclosed between Sub Main() and End Sub), and
its object name (Name property as displayed in the property window)
must be "Modulel".

When you are working with the E5071C
measurement screen, the E5071C's macro environment only
provides access to those VBA programs that are created as
subprograms (enclosed between Sub and End Sub) in a
standard module.

Loading and Executing Programs in Batch Process

This section describes how to load and execute a program (VBA project) in
a batch process by pressing the softkey corresponding to the program
name.

1. Save the VBA program (VBA project file) into the following folder.
D:\VBA

This feature is available only for programs
saved in D:\VBA. This feature is not available for programs
saved in subfolders of D:\VBA.

When copying a VBA program to D:\VBA from
another folder, copy all the files necessary to execute the
program to appropriate folders. When copying a factory-
installed VBA program into D:\VBA, choose only its VBA
project file.

2. Press Macro Seup key.
3. Click Load & Run.

4. Press the softkey corresponding to the VBA project file name of the
program you want to execute. The pressed VBA project is loaded and
the program whose procedure name is set to "Main" (subprogram
enclosed between Sub Main() and End Sub) and whose object name
(Name property as displayed in the property window) is set to
"Module1" is executed.

1366

Programming

There is no limit to the number of VBA project files
that can be saved in D:\VBA. However, the maximum number of
programs that can be displayed as softkeys is 50.

« File names of the VBA projects saved in D:\VBA are displayed as
softkeys in alphabetical order.

« The maximum number of characters that can be displayed in a
softkey is 12. If a file name has 13 or more characters, "..." is added
to the 12th character from the beginning of the program name and
displayed. In this case a .vba extension is omitted.

1367

E5071C

Stopping a VBA Program
o Stopping a Procedure
e Abruptly Terminating a VBA Program

Other topics about Operation Basics

Stopping a Procedure

This section describes how to break a procedure during the execution of a
VBA program.

1. To break the running VBA program, do one of the following:
e On the Run menu, click Break.
« On the toolbar, click "Break Macro" icon.
o Press Ctrl + Break keys on the keyboard.
o Macro Setup > Stop (E5071C measurement screen)
o Press Macro Break key on the E5071C front panel.

2. A dialog box is displayed through forced interrupts, and the program
is suspended.

Microsoft Visual Basic

Code execution has been interrupted

Zontinue | End | | Help

ed071c250

Select one of the following:
o Continue: Resumes the execution of the program.
 End: Terminates the VBA program.
o Debug: Displays a run-time error.
e Help: Brings up VBA Online Help.

Abruptly Terminating a VBA Program

This section describes how to abruptly terminate a running procedure.
When abruptly terminating the VBA program by the below methods, the

"Program interrupted" message is shown in the instrument status bar on
the bottom of the LCD display.

1368

Programming

To terminate the running VBA program, do one of the following:

e On the Run menu, click Reset.
e On the toolbar, click "Reset Macro" icon.
o Insert an End statement into your code.

1369

E5071C

Errors and Debugging
o Type of Errors

e Using a Debug Tool

Other topics about Operation Basics

Type of Errors

Errors in VBA programs are classified into the following two types:

Syntax errors

A syntax error is generated when Visual Basic Editor detects an invalid
statement that violates the Visual Basic syntax rules. For example,
misspelled keywords generate syntax errors. An error dialog box appears
that indicates the error message, and highlight the invalid statement in
red. To get detailed information on the error, click the HELP button in the
error dialog box to display the help topic on the error. You cannot run the
macro until you correct the syntax error.

The E5071C VBA environment is by default configured to automatically
check for syntax errors, but you can disable the auto syntax check feature
using the following steps:

1. On the Tools menu, click Options....

1370

Programming

2. On the Editor tab, clear the Auto Syntax Check check box.

Editar lEu:Iitu:ur Format | General | Docking |

Code Settings

(| Auto Synkax Chec [+ &uka Indent

v Auto List Members
v Auko Quick Info
v Auto Data Tips

Window Settings

¥ Drag-and-Drop Text Editing
Iv Defaulk to Full Module Yiew
v Procedure Separatar

[Require Variable Declaration
i Tab Width: |4

k. | Cancel

Help

e5071¢121
3. Click the OK button.

Run-time Errors

A run-time error is generated when a VBA program attempts to execute an
invalid statement at run time. When a run-time error is generated, the
program is stopped at the invalid statement, and an error dialog box
appears. You can terminate the program by clicking the END button in the
error dialog box. Also, you can click the DEBUG button in the error dialog
box to identify the statement that caused the error. In this case, the

statement in question is highlighted in yellow.

Some run-time errors occur under particular
conditions, even though a program run without occurring the
errors under normal conditions. For example, the "Target value
not found" error that occurs when a program that analyzes the
results using the Marker Bandwidth Search feature fail to
perform bandwidth search because the marker is not in the
appropriate position, the "Ecal module not in RF path" error that
occurs when a program that performs calibrations using a ECal
module fail to measure the calibration data because the ECal
module is not appropriately connected to test ports, and so on.

Using a Debug Tool

1371

E5071C

The E5071C's VBA environment provides a variety of debug tools that help
you identify logical errors. Detailed information on using the debug tools is
covered in VBA Online Help and books on VBA.

Debug Toolbar

The debug toolbar provides tool buttons that allow you to easily access
various debug tools.

On the View menu, click Toolbars > Debug.

Debug toolbar

e5071c122

. Set/clear break points (keyboard F9): Puts a break point at the

cursor position or clears an existing break point.

. Step-in (keyboard: F8): Runs the VBA program step by step. If the

current program contains a call to another procedure, that procedure
is also run step by step.

. Step-over (keyboard: Shift + F8): Runs the VBA program step by

step. If the current program contains a call to another procedure,
that procedure is run as one line.

. Step-out (keyboard: Ctrl + Shift + F8): Executes the remaining lines

of the function where the execution point is currently placed.

Local window: Opens the local window that shows the current values
of local variables.

. Immediate window (keyboard: Ctrl + G): Opens the immediate

window that evaluates entered values of variables or expressions.

Watch window: Opens the watch window that displays the current
value of a specified expression.

. Quick window (keyboard: Shift + F9): Displays the current value of a

specified expression in a dialog box.

Setting a Break Point

1372

Programming

By placing a break point at a particular statement in a VBA program, you

can automatically suspend the program when it is executed to that

statement.

When you put a break point at a line, the line is highlighted in umber as
shown in the following figure. To set a break point, do one of the following:

o Place the cursor at the desired line of code, and click the "Set/clear

break points" button on the debug toolbar.

o Click anywhere in the margin indicator bar of the code window.

Setting a break point

*. YBAProject - UserMenu (Code) @
-

|lﬁcnt| al} :J (Waodirmum

Dim Sctart A= Integer, Last A= Integer, Mum A= Integer

Dim Haxlmum A=S I]‘lEEgEE

! Defining the array

q = Areay(7?, -2, 3, -20, 15, -6, 27, -1&, 9, -5, 18, 23, 9, -16, &2, 0Q)

Start = LBound(g)

@ Last = UBound {g)

Numm = Last - Scartc + 1

For i = 3tarc To Last

®{i} = gq(i)

:Ii”

e5071c123

Monitoring Variable or Property Values

With your VBA program suspended, you can use the following debug tool
to monitor variables or properties. To do this, you must set a break point,

run the VBA program, and suspend it.

Data Hint

When you point to the variable or expression of interest, Data Hint shows

the current value as shown in the following figure.
Data Hint

1373

E5071C

* VBAProject - UserMenu (Code)
iGeneral) | [Maximum

=i
Dim Maximum As Integer z!

' Defining the array

q = Akrrayi?, =2, 3, =20, 15, =6, 27, =12, §, =5, 18, 23, 8, =16, 22, O}

Scarc = LBound (g}

¢ IlLa=c = UBoundiq)
[UBoundiq) = 1]

Nwn = Last - Jgact + 1

For i = Starc To Last

®fi) = q(i)

Hext i
& 2 NI _*IJ
ehd7 1127

Immediate Window

To display the immediate window, click Bl on the debug toolbar.

In the immediate window, enter a question mark (?) followed by the
variable or expression whose value you want to check, and press the Enter
key, as shown in the following figure. The current value appears in the line

that follows.
Immediate window

Immediate E3

?3tart 2E:
0
e5071¢124

Watch Window
To display the watch window, click the "Watch Window" button on the
debug toolbar.

Watch window

1374

Programming

| Expression Walue Type Corntext _
& Boundig) 15 Long Uzerbenu Maximum
es071c126
1. On the Debug menu, click Add Watch.... to open the Add Watch dialog
box.

2. As shown in the following figure, you can specify an expression of
interest as a watch expression to always monitor its value.

3. Click the OK button.
Add Watch dialog box
Add Watch X

Expression:

Zancel

-DK
| Bound(q)]

—iConkexk —
Procedure: | EEEENT Help]
Maodule: UserMenu _vj

| Project: VBAProject
Watch Type -
o watch Expression
" Break When alue Is True
" Break When Yalue Changes

e5071c125

Quick Watch

In the code window, select a variable or expression whose value you want
to watch. On the debug toolbar, click the "Quick Watch" button to open the
Quick Watch dialog box. The dialog box displays the current value of your
specified variable or expression.

Also, you can click the Add button in the Quick Watch dialog box to specify
the current expression as a watch expression.

1375

E5071C

Printing Output Values in the Echo Window
e Overview
o Entering Values Output to Echo Window

e Opening Echo Window

e Clearing Values Output from Echo Window

Other topics about Operation Basics

Overview

The echo window, which appears in the lower part of the E5071C
measurement screen, can be used to display a message or the return value
(data) of an object.

Entering Values Output to Echo Window

You can use the COM objects listed below to enter values output to the
echo window.

« ECHO
o SCPI.DISPlay.ECHO.DATA

Opening Echo Window
You can use the COM objects listed below to open the echo window.

o SCPI.DISPlay.TABLe.TYPE
o SCPI.DISPlay.TABLe.STATe

Alternatively, you can also open the echo window using the following key
sequence:

Macro Setup > Echo Window (ON)

Clearing Values Output from Echo Window

You can use the COM object shown below to clear values output from the
echo window.

o SCPI.DISPlay.ECHO.CLEar

Alternatively, you can also clear values output from the echo window using
the following key sequence:

Macro Setup > Clear Echo

1376

Programming

Uses Advanced Techniques
e Accessing a List of E5071C COM Objects
« Using Automatic Library References

Other topics about Opera